Environmental Research Center (ERC), Department of Applied Chemistry, Razi University, P.O. Box: 67149, Kermanshah, Iran.
Environmental Research Center (ERC), Department of Applied Chemistry, Razi University, P.O. Box: 67149, Kermanshah, Iran.
J Hazard Mater. 2019 May 5;369:384-397. doi: 10.1016/j.jhazmat.2019.02.049. Epub 2019 Feb 14.
The aim of current study is to synthesis novel visible driven photocatalysts (L-Histidine (C, N) codoped-TiO-CdS) with different loadings of L-Hisitdine (1, 2, and 3 wt.%) and CdS (1:9, 7:1, and 1:5 mass ratios of CdS to TiO). Then, their application for photo-degradation of methyl orange (MO) and biologically treated palm oil mill effluent (POME) were studied. The structure, optical properties, and morphology of the prepared nanocomposites were also characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR), photoluminescence spectroscopy (PL), and diffuse reflectance spectra (DRS). DRS results indicated that all the modified samples with different L-Hisitdine and CdS loadings showed a red shift to visible region. The results of photo-degradation experiments showed that L-Hisitdine with a weight fraction of 2% and mass ratio of TiO to CdS of 7:1 were the optimum amount of the modifiers in the photocatalyst network. The PL intensity of the photocatalyst decreased with addition of L-Hisitdine and CdS nanoparticles due to a decrease in e/h recombination. The effects of organic pollutant concentration, initial pH, catalyst concentration, and irradiation time on the photo-degradation process of MO and POME were studied using full faced centered central composite design (CCFD) under response surface methodology (RSM). The obtained results showed that MO was completely removed at initial concentration of 10 mg/L, acidic pH, and catalyst loading of 1.5 g/L after 120 min. The complete degradation of biologically treated POME was achieved at original pH, 300 mg/L of chemical oxygen demand (COD) concentration, catalyst loading of 2 g/L, and irradiation time of 2 h.
当前研究的目的是合成具有不同负载量的 L-组氨酸(C,N)共掺 TiO2-CdS 的新型可见光驱动光催化剂(L-组氨酸(C,N)共掺 TiO2-CdS),负载量分别为 1、2 和 3wt.%,CdS 与 TiO2 的质量比分别为 1:9、7:1 和 1:5。然后,研究了它们在光降解甲基橙(MO)和生物处理棕榈油厂废水(POME)中的应用。还通过 X 射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外(FT-IR)、光致发光光谱(PL)和漫反射光谱(DRS)对制备的纳米复合材料的结构、光学性质和形貌进行了表征。DRS 结果表明,所有负载不同 L-组氨酸和 CdS 负载量的改性样品均向可见光区发生红移。光降解实验结果表明,当 L-组氨酸的重量分数为 2%,TiO2 与 CdS 的质量比为 7:1 时,光催化剂网络中改性剂的最佳用量。由于 e/h 复合减少,添加 L-组氨酸和 CdS 纳米粒子后,光催化剂的 PL 强度降低。采用响应面法(RSM)下的全因子中心复合设计(CCFD)研究了有机污染物浓度、初始 pH 值、催化剂浓度和辐照时间对 MO 和 POME 光降解过程的影响。结果表明,MO 在初始浓度为 10mg/L、酸性 pH 值和催化剂负载量为 1.5g/L 时,在 120min 内完全去除。在原始 pH 值、300mg/L 化学需氧量(COD)浓度、催化剂负载量为 2g/L 和 2h 辐照时间下,可实现生物处理后的 POME 的完全降解。