Suppr超能文献

利用多光谱分析测定β-内酰胺抗生素与环糊精形成复合物的机器学习方法。

Machine Learning Approach for Determining the Formation of β-Lactam Antibiotic Complexes with Cyclodextrins Using Multispectral Analysis.

机构信息

Department of Pharmacognosy, Faculty of Pharmacy, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland.

Institute of Molecular Physics, Polish Academy of Science, ul. Smoluchowskiego 17, 60-179 Poznań, Poland.

出版信息

Molecules. 2019 Feb 19;24(4):743. doi: 10.3390/molecules24040743.

Abstract

The problem of determining the formation of complexes of β-lactam antibiotics with cyclodextrins (CDs) and the interactions involved in this process were addressed by machine learning on multispectral images. Complexes of β-lactam antibiotics, including cefuroxime axetil, cefetamet pivoxil, and pivampicillin, as well as CDs, including αCD, βCD, γCD, hydroxypropyl-αCD, methyl-βCD, hydroxypropyl-βCD, and hydroxypropyl-γCD, were prepared in all combinations. Thermograms confirming the formation of cyclodextrin complexes were obtained using differential scanning calorimetry. Transmission Fourier-transform infrared (tFTIR) and complementary attenuated total reflectance FTIR (ATR) coupled with machine learning were techniques chosen as a nondestructive alternative. The machine learning algorithm was used to determine the formation of complexes in samples using solely their tFTIR and ATR spectra at the prediction stage. Parameterized method 7 (PM7) was used to support the analysis by molecular modeling of the complexes. The model developed through machine learning properly distinguished samples with formed complexes form noncomplexed samples with a cross-validation accuracy of 90.4%. Analysis of the contribution of spectral bands to the model indicated interactions of ester groups of β-lactam antibiotics with CDs, as well as some interactions of cephem ring in cefetamet pivoxil and penam moiety in pivampicillin. Molecular modeling with PM7 helped to explain experimental results and allowed to propose possible binding modes.

摘要

采用多光谱图像的机器学习方法解决了β-内酰胺类抗生素与环糊精(CDs)形成复合物以及涉及该过程的相互作用的问题。制备了包括头孢呋辛醋乙酯、头孢替安匹肟、匹伐西林在内的β-内酰胺类抗生素与包括αCD、βCD、γCD、羟丙基-αCD、甲基-βCD、羟丙基-βCD 和羟丙基-γCD 在内的所有 CDs 的复合物。采用差示扫描量热法获得了确证环糊精复合物形成的热谱图。透射傅里叶变换红外光谱(tFTIR)和互补衰减全反射傅里叶变换红外光谱(ATR)与机器学习相结合被选为非破坏性替代方法。机器学习算法用于仅使用其在预测阶段的 tFTIR 和 ATR 光谱来确定样品中复合物的形成。参数化方法 7(PM7)用于通过分子建模来支持复合物的分析。通过机器学习开发的模型能够正确地区分形成复合物的样品和未形成复合物的样品,交叉验证准确率为 90.4%。对光谱带对模型的贡献的分析表明,β-内酰胺类抗生素的酯基与 CDs 相互作用,以及头孢替安匹肟中的头孢烯环和匹伐西林中的青霉烷部分的一些相互作用。PM7 的分子建模有助于解释实验结果,并允许提出可能的结合模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db1/6413071/8b20c091749c/molecules-24-00743-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验