Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, 2000, Rosario, Argentina.
Sci Rep. 2019 Feb 21;9(1):2483. doi: 10.1038/s41598-019-39492-9.
Eukaryotic integral membrane proteins (IMPs) are difficult to study due to low functional expression levels. To investigate factors for efficient biogenesis of eukaryotic IMPs in the prokaryotic model organism Escherichia coli, important, e.g., for isotope-labeling for NMR, we selected for E. coli cells expressing high levels of functional G protein-coupled receptors (GPCRs) by FACS. Utilizing an E. coli strain library with all non-essential genes systematically deleted, we unexpectedly discovered upon whole-genome sequencing that the improved phenotype was not conferred by the deleted genes but by various subtle alterations in the "housekeeping" sigma 70 factor (RpoD). When analyzing effects of the rpoD mutations at the transcriptome level we found that toxic effects incurred on wild-type E. coli during receptor expression were diminished by two independent and synergistic effects: a slower but longer-lasting GPCR biosynthesis and an optimized transcriptional pattern, augmenting growth and expression at low temperature, setting the basis for further bacterial strain engineering.
真核整合膜蛋白(IMPs)由于功能表达水平低而难以研究。为了研究在原核模式生物大肠杆菌中有效生成真核 IMP 的因素,例如对 NMR 进行同位素标记,我们通过 FACS 选择表达高水平功能性 G 蛋白偶联受体(GPCR)的大肠杆菌细胞。利用系统删除所有非必需基因的大肠杆菌菌株文库,我们在全基因组测序时意外发现,改善的表型不是由缺失的基因赋予的,而是由“管家”σ70 因子(RpoD)的各种细微改变赋予的。在分析 rpoD 突变在转录组水平上的影响时,我们发现,在受体表达过程中野生型大肠杆菌受到的毒性影响通过两种独立且协同的作用得到减轻:GPCR 生物合成速度较慢但持续时间更长,以及转录模式得到优化,在低温下促进生长和表达,为进一步的细菌菌株工程奠定了基础。