Suppr超能文献

牙的血供和神经支配的建立是受发育调控的,并通过不同的模式形成过程发生。

Establishment of tooth blood supply and innervation is developmentally regulated and takes place through differential patterning processes.

机构信息

Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.

Centre for International Health, University of Bergen, Bergen, Norway.

出版信息

J Anat. 2019 Apr;234(4):465-479. doi: 10.1111/joa.12950. Epub 2019 Feb 21.

Abstract

Teeth are richly supported by blood vessels and peripheral nerves. The aim of this study was to describe in detail the developmental time-course and localization of blood vessels during early tooth formation and to compare that to innervation, as well as to address the putative role of vascular endothelial growth factor (VEGF), which is an essential regulator of vasculature development, in this process. The localization of blood vessels and neurites was compared using double immunofluorescence staining on sections at consecutive stages of the embryonic (E) and postnatal (PN) mandibular first molar tooth germ (E11-PN7). Cellular mRNA expression domains of VEGF and its signaling receptor VEGFR2 were studied using sectional radioactive in situ hybridization. Expression of VEGF mRNA and the encoded protein were studied by RT-PCR and western blot analysis, respectively, in the cap and early bell stage tooth germs, respectively. VEGFR2 was immunolocalized on tooth tissue sections. Smooth muscle cells were investigated by anti-alpha smooth muscle actin (αSMA) antibodies. VEGF showed developmentally regulated epithelial and mesenchymal mRNA expression domains including the enamel knot signaling centers that correlated with the growth and navigation of the blood vessels expressing Vegfr2 and VEGFR2 to the dental papilla and enamel organ. Developing blood vessels were present in the jaw mesenchyme including the presumptive dental mesenchyme before the appearance of the epithelial dental placode and dental neurites. Similarly, formation of a blood vessel plexus around the bud stage tooth germ and ingrowth of vessels into dental papilla at E14 preceded ingrowth of neurites. Subsequently, pioneer blood vessels in the dental papilla started to receive smooth muscle coverage at the early embryonic bell stage. Establishment and patterning of the blood vessels and nerves during tooth formation are developmentally regulated, stepwise processes that likely involve differential patterning mechanisms. Development of tooth vascular supply is proposed to be regulated by local, tooth-specific regulation by epithelial-mesenchymal tissue interactions and involving tooth target expressed VEGF signaling. Further investigations on tooth vascular development by local VEGF signaling, as well as how tooth innervation and development of blood vessels are integrated with advancing tooth organ formation by local signaling mechanisms, are warranted.

摘要

牙齿被丰富的血管和周围神经所支持。本研究的目的是详细描述早期牙齿形成过程中血管的发育时间进程和定位,并将其与神经支配进行比较,同时探讨血管内皮生长因子(VEGF)在这个过程中的潜在作用,VEGF 是血管发育的重要调节因子。在胚胎(E)和出生后(PN)下颌第一磨牙牙胚的连续阶段的切片上,通过双重免疫荧光染色比较血管和神经突的定位。使用放射性原位杂交研究 VEGF 及其信号受体 VEGFR2 的细胞 mRNA 表达域。通过 RT-PCR 和 Western blot 分析分别研究 VEGF mRNA 和编码蛋白在帽状和早期钟状牙胚中的表达。在牙组织切片上免疫定位 VEGFR2。通过抗α平滑肌肌动蛋白(αSMA)抗体研究平滑肌细胞。VEGF 显示出发育调节的上皮和间充质 mRNA 表达域,包括与表达 Vegfr2 和 VEGFR2 的血管的生长和导航相关的牙结信号中心,以及向牙乳头和釉质器官。在出现上皮牙质斑块之前,下颌间质中包括推定的牙间质中存在发育中的血管,包括在出现牙质上皮盘之前。同样,在 E14 时,芽状牙胚周围的血管丛形成和血管向内生长到牙乳头发生在神经突向内生长之前。随后,牙乳头中的先驱血管开始在早期胚胎钟状阶段获得平滑肌覆盖。牙齿形成过程中血管和神经的建立和模式形成是发育调节的、逐步的过程,可能涉及不同的模式形成机制。提出牙齿血管供应的发育受局部、牙齿特异性的上皮-间充质组织相互作用的调节,并涉及牙齿靶表达的 VEGF 信号。通过局部 VEGF 信号进一步研究牙齿血管发育,以及如何通过局部信号机制与牙齿器官形成的进展相整合,牙齿神经支配和血管发育,是值得的。

相似文献

2
Expression of GDNF and its receptors in developing tooth is developmentally regulated and suggests multiple roles in innervation and organogenesis.
Dev Dyn. 1997 Dec;210(4):463-71. doi: 10.1002/(SICI)1097-0177(199712)210:4<463::AID-AJA9>3.0.CO;2-E.
3
Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis.
Dev Dyn. 2000 Nov;219(3):322-32. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1062>3.0.CO;2-J.
6
Neurturin mRNA expression suggests roles in trigeminal innervation of the first branchial arch and in tooth formation.
Dev Dyn. 1998 Oct;213(2):207-19. doi: 10.1002/(SICI)1097-0177(199810)213:2<207::AID-AJA6>3.0.CO;2-K.
8
Fgfr2b mediated epithelial-mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning.
Mech Dev. 2007 Nov-Dec;124(11-12):868-83. doi: 10.1016/j.mod.2007.09.003. Epub 2007 Sep 19.

引用本文的文献

2
Distinct BMP-Smad signaling outputs confer diverse functions in dental mesenchyme.
Development. 2025 Jun 15;152(12). doi: 10.1242/dev.204563. Epub 2025 Jun 19.
3
Dentin sialoprotein promotes endothelial differentiation of dental pulp stem cells through DSP-endoglin-AKT1 axis.
J Biol Chem. 2025 Apr;301(4):108380. doi: 10.1016/j.jbc.2025.108380. Epub 2025 Mar 4.
4
Dentin sialoprotein acts as an angiogenic factor through association with the membrane receptor endoglin.
J Biol Chem. 2025 Mar;301(3):108279. doi: 10.1016/j.jbc.2025.108279. Epub 2025 Feb 6.
5
Spatial and temporal gene expression patterns during early human odontogenesis process.
Front Bioeng Biotechnol. 2024 Jul 16;12:1437426. doi: 10.3389/fbioe.2024.1437426. eCollection 2024.
6
Spatiotemporal cell landscape of human embryonic tooth development.
Cell Prolif. 2024 Sep;57(9):e13653. doi: 10.1111/cpr.13653. Epub 2024 Jun 12.
7
Vascular architecture regulates mesenchymal stromal cell heterogeneity via P53-PDGF signaling in the mouse incisor.
Cell Stem Cell. 2024 Jun 6;31(6):904-920.e6. doi: 10.1016/j.stem.2024.04.011. Epub 2024 May 3.
8
Immunohistochemical Localization of Endothelin- 1 and Endothelin A Receptor in Human Primary Tooth Enamel Organ.
J Dent (Shiraz). 2023 Sep;24(3):328-334. doi: 10.30476/dentjods.2022.95201.1845.
9
Atlas of human dental pulp cells at multiple spatial and temporal levels based on single-cell sequencing analysis.
Front Physiol. 2022 Oct 4;13:993478. doi: 10.3389/fphys.2022.993478. eCollection 2022.
10
Endothelial cells during craniofacial development: Populating and patterning the head.
Front Bioeng Biotechnol. 2022 Aug 29;10:962040. doi: 10.3389/fbioe.2022.962040. eCollection 2022.

本文引用的文献

1
Integration of tooth morphogenesis and innervation by local tissue interactions, signaling networks, and semaphorin 3A.
Cell Adh Migr. 2016 Nov;10(6):618-626. doi: 10.1080/19336918.2016.1216746. Epub 2016 Aug 9.
2
Mechanisms and regulation of endothelial VEGF receptor signalling.
Nat Rev Mol Cell Biol. 2016 Oct;17(10):611-25. doi: 10.1038/nrm.2016.87. Epub 2016 Jul 27.
3
Stem Cells in Tooth Development, Growth, Repair, and Regeneration.
Curr Top Dev Biol. 2015;115:187-212. doi: 10.1016/bs.ctdb.2015.07.010. Epub 2015 Oct 1.
4
Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development.
Development. 2015 Jun 1;142(11):1984-91. doi: 10.1242/dev.117952. Epub 2015 May 14.
5
VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain.
Development. 2015 Jan 15;142(2):314-9. doi: 10.1242/dev.115998. Epub 2014 Dec 17.
6
Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine.
Dev Dyn. 2015 Jan;244(1):56-68. doi: 10.1002/dvdy.24178. Epub 2014 Sep 22.
7
Glial origin of mesenchymal stem cells in a tooth model system.
Nature. 2014 Sep 25;513(7519):551-4. doi: 10.1038/nature13536. Epub 2014 Jul 27.
8
Netrin-1 controls sympathetic arterial innervation.
J Clin Invest. 2014 Jul;124(7):3230-40. doi: 10.1172/JCI75181. Epub 2014 Jun 17.
9
Sema3A chemorepellant regulates the timing and patterning of dental nerves during development of incisor tooth germ.
Cell Tissue Res. 2014 Jul;357(1):15-29. doi: 10.1007/s00441-014-1839-3. Epub 2014 Apr 22.
10
Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models.
Exp Cell Res. 2014 Jul 15;325(2):72-7. doi: 10.1016/j.yexcr.2014.02.029. Epub 2014 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验