Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.
Institute of Neurology, University College London, London, UK.
Cereb Cortex. 2019 May 1;29(5):2196-2210. doi: 10.1093/cercor/bhz023.
Cortical activity is organized across multiple spatial and temporal scales. Most research on the dynamics of neuronal spiking is concerned with timescales of 1 ms-1 s, and little is known about spiking dynamics on timescales of tens of seconds and minutes. Here, we used frequency domain analyses to study the structure of individual neurons' spiking activity and its coupling to local population rate and to arousal level across 0.01-100 Hz frequency range. In mouse medial prefrontal cortex, the spiking dynamics of individual neurons could be quantitatively captured by a combination of interspike interval and firing rate power spectrum distributions. The relative strength of coherence with local population often differed across timescales: a neuron strongly coupled to population rate on fast timescales could be weakly coupled on slow timescales, and vice versa. On slow but not fast timescales, a substantial proportion of neurons showed firing anticorrelated with the population. Infraslow firing rate changes were largely determined by arousal rather than by local factors, which could explain the timescale dependence of individual neurons' population coupling strength. These observations demonstrate how neurons simultaneously partake in fast local dynamics, and slow brain-wide dynamics, extending our understanding of infraslow cortical activity beyond the mesoscale resolution of fMRI.
皮质活动在多个时空尺度上组织起来。大多数关于神经元尖峰放电动力学的研究都集中在 1 毫秒到 1 秒的时间尺度上,而对于数十秒到数分钟的尖峰放电动力学知之甚少。在这里,我们使用频域分析来研究个体神经元放电活动的结构及其在 0.01-100 Hz 频率范围内与局部群体率和觉醒水平的耦合。在小鼠内侧前额叶皮层中,单个神经元的放电动力学可以通过尖峰间隔和放电率功率谱分布的组合来定量捕获。与局部群体的相干性相对强度经常因时间尺度而异:在快速时间尺度上与群体率强耦合的神经元在缓慢时间尺度上可能弱耦合,反之亦然。在缓慢但不是快速的时间尺度上,相当一部分神经元的放电与群体呈反相关。亚慢的放电率变化主要由觉醒决定,而不是由局部因素决定,这可以解释个体神经元群体耦合强度的时间尺度依赖性。这些观察结果表明,神经元如何同时参与快速的局部动力学和缓慢的全脑动力学,从而扩展了我们对亚慢皮质活动的理解,超越了 fMRI 的中尺度分辨率。
Cereb Cortex. 2019-5-1
Proc Natl Acad Sci U S A. 2021-11-23
Front Neural Circuits. 2017-9-14
Nat Neurosci. 2008-7
J Neuroeng Rehabil. 2019-5-24
Neuroimage. 2013-2-26
PLoS Comput Biol. 2025-6-4
Netw Neurosci. 2024-12-10
Neurosci Conscious. 2024-5-7
bioRxiv. 2025-2-18
Netw Neurosci. 2023-6-30
Science. 2019-4-18
Proc Natl Acad Sci U S A. 2018-6-8
Proc Natl Acad Sci U S A. 2017-10-30