Suppr超能文献

嵌合抗原受体 T 细胞中粒细胞-巨噬细胞集落刺激因子失活可防止单核细胞依赖性关键细胞因子释放综合征介质的释放。

Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators.

机构信息

From Cellectis, Inc., 430 East 29th St., New York, New York 10016 and

Cellectis, 8 Rue de la Croix Jarry, 75013 Paris, France.

出版信息

J Biol Chem. 2019 Apr 5;294(14):5430-5437. doi: 10.1074/jbc.AC119.007558. Epub 2019 Feb 25.

Abstract

Chimeric antigen receptor T-cell (CAR T-cell) therapy has been shown to be clinically effective for managing a variety of hematological cancers. However, CAR T-cell therapy is associated with multiple adverse effects, including neurotoxicity and cytokine release syndrome (CRS). CRS arises from massive cytokine secretion and can be life-threatening, but it is typically managed with an anti-IL-6Ra mAb or glucocorticoid administration. However, these treatments add to a patient's medication burden and address only the CRS symptoms. Therefore, alternative strategies that can prevent CRS and neurotoxicity associated with CAR T-cell treatment are urgently needed. Here, we explored a therapeutic route aimed at preventing CRS rather than limiting its consequences. Using a cytokine-profiling assay, we show that granulocyte-macrophage colony-stimulating factor (GMCSF) is a key CRS-promoting protein. Through a combination of experiments and gene-editing technology, we further demonstrate that antibody-mediated neutralization or TALEN-mediated genetic inactivation of GMCSF in CAR T-cells drastically decreases available GMCSF and abolishes macrophage-dependent secretion of CRS biomarkers, including monocyte chemoattractant protein 1 (MCP-1), interleukin (IL) 6, and IL-8. Of note, we also found that the genetic inactivation of GMCSF does not impair the antitumor function or proliferative capacity of CAR T-cells We conclude that it is possible to prevent CRS by using "all-in-one" GMCSF-knockout CAR T-cells. This approach may eliminate the need for anti-CRS treatment and may improve the overall safety of CAR T-cell therapies for cancer patients.

摘要

嵌合抗原受体 T 细胞(CAR T 细胞)疗法已被证明在治疗多种血液系统癌症方面具有临床疗效。然而,CAR T 细胞疗法与多种不良反应相关,包括神经毒性和细胞因子释放综合征(CRS)。CRS 源于大量细胞因子的分泌,可能危及生命,但通常通过抗 IL-6Ra mAb 或糖皮质激素治疗来管理。然而,这些治疗方法增加了患者的药物负担,并且仅解决了 CRS 症状。因此,迫切需要能够预防与 CAR T 细胞治疗相关的 CRS 和神经毒性的替代策略。在这里,我们探索了一种旨在预防 CRS 而不是限制其后果的治疗途径。通过细胞因子分析测定,我们表明粒细胞巨噬细胞集落刺激因子(GMCSF)是一种关键的 CRS 促进蛋白。通过一系列实验和基因编辑技术,我们进一步证明,CAR T 细胞中 GMCSF 的抗体中和或 TALEN 介导的基因失活可显著降低 GMCSF 的可用性,并消除巨噬细胞依赖性 CRS 生物标志物的分泌,包括单核细胞趋化蛋白 1(MCP-1)、白细胞介素(IL)6 和 IL-8。值得注意的是,我们还发现 GMCSF 的基因失活不会损害 CAR T 细胞的抗肿瘤功能或增殖能力。我们得出结论,使用“全合一”GMCSF 敲除 CAR T 细胞可以预防 CRS。这种方法可能消除对 CRS 治疗的需求,并可能提高癌症患者 CAR T 细胞治疗的整体安全性。

相似文献

3
Using CRISPR/Cas9 to Knock Out GM-CSF in CAR-T Cells.
J Vis Exp. 2019 Jul 22(149). doi: 10.3791/59629.
4
GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts.
Blood. 2019 Feb 14;133(7):697-709. doi: 10.1182/blood-2018-10-881722. Epub 2018 Nov 21.
6
Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment.
Front Immunol. 2021 Feb 23;12:611366. doi: 10.3389/fimmu.2021.611366. eCollection 2021.
7
Biomarkers for Predicting Cytokine Release Syndrome following CD19-Targeted CAR T Cell Therapy.
J Immunol. 2021 Apr 1;206(7):1561-1568. doi: 10.4049/jimmunol.2001249. Epub 2021 Mar 10.
8
Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies.
Curr Med Sci. 2021 Jun;41(3):420-430. doi: 10.1007/s11596-021-2391-5. Epub 2021 Jul 3.
9
Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy.
Br J Haematol. 2018 Nov;183(3):364-374. doi: 10.1111/bjh.15644. Epub 2018 Nov 8.

引用本文的文献

2
From induced pluripotent stem cell (iPSC) to universal immune cells: literature review of advances in a new generation of tumor therapies.
Transl Cancer Res. 2025 Apr 30;14(4):2495-2507. doi: 10.21037/tcr-24-1087. Epub 2025 Apr 15.
3
Deep insight into cytokine storm: from pathogenesis to treatment.
Signal Transduct Target Ther. 2025 Apr 16;10(1):112. doi: 10.1038/s41392-025-02178-y.
4
A viral infection prediction model for patients with r/r B-cell malignancies after CAR-T therapy: a retrospective analysis.
Front Oncol. 2025 Mar 21;15:1549809. doi: 10.3389/fonc.2025.1549809. eCollection 2025.
5
In-depth analysis of the safety of CAR-T cell therapy for solid tumors.
Front Immunol. 2025 Feb 24;16:1548979. doi: 10.3389/fimmu.2025.1548979. eCollection 2025.
6
Novel strategies to manage CAR-T cell toxicity.
Nat Rev Drug Discov. 2025 May;24(5):379-397. doi: 10.1038/s41573-024-01100-5. Epub 2025 Feb 3.
8
Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation.
Front Immunol. 2024 Dec 24;15:1519415. doi: 10.3389/fimmu.2024.1519415. eCollection 2024.
10
Evolving strategies for addressing CAR T-cell toxicities.
Cancer Metastasis Rev. 2024 Dec 15;44(1):17. doi: 10.1007/s10555-024-10227-1.

本文引用的文献

1
GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts.
Blood. 2019 Feb 14;133(7):697-709. doi: 10.1182/blood-2018-10-881722. Epub 2018 Nov 21.
3
A Versatile Safeguard for Chimeric Antigen Receptor T-Cell Immunotherapies.
Sci Rep. 2018 Jun 12;8(1):8972. doi: 10.1038/s41598-018-27264-w.
5
CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade.
Nat Med. 2018 Jun;24(6):731-738. doi: 10.1038/s41591-018-0041-7. Epub 2018 May 28.
6
Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia.
N Engl J Med. 2018 Feb 1;378(5):439-448. doi: 10.1056/NEJMoa1709866.
7
Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma.
N Engl J Med. 2017 Dec 28;377(26):2531-2544. doi: 10.1056/NEJMoa1707447. Epub 2017 Dec 10.
8
Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas.
N Engl J Med. 2017 Dec 28;377(26):2545-2554. doi: 10.1056/NEJMoa1708566. Epub 2017 Dec 10.
9
Cytokine release syndrome: Who is at risk and how to treat.
Best Pract Res Clin Haematol. 2017 Dec;30(4):336-340. doi: 10.1016/j.beha.2017.09.002. Epub 2017 Sep 22.
10
Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.
Cancer Discov. 2017 Dec;7(12):1404-1419. doi: 10.1158/2159-8290.CD-17-0698. Epub 2017 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验