Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Programa de Estudio y Control de Enfermedades Tropicales - PECET, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Infect Genet Evol. 2019 Apr;69:267-278. doi: 10.1016/j.meegid.2018.07.001. Epub 2018 Jul 2.
The introduction of highly active antiretroviral therapy (HAART) has significantly improved life expectancy of HIV-infected patients; nevertheless, it does not eliminate the virus from hosts, so a cure for this infection is crucial. Some strategies have employed the induction of anti-HIV CD8 T cells. However, the high genetic variability of HIV-1 represents the biggest obstacle for these strategies, since immune escape mutations within epitopes restricted by Human Leukocyte Antigen class I molecules (HLA-I) abrogate the antiviral activity of these cells. We used a bioinformatics pipeline for the determination of such mutations, based on selection pressure and docking/refinement analyses. Fifty HIV-1 infected patients were recruited; HLA-A and HLA-B alleles were typified using sequence-specific oligonucleotide approach, and viral RNA was extracted for the amplification of HIV-1 gag, which was bulk sequenced and aligned to perform selection pressure analysis, using Single Likelihood Ancestor Counting (SLAC) and Fast Unconstrained Bayesian Approximation (FUBAR) algorithms. Positively selected sites were mapped into HLA-I-specific epitopes, and both mutated and wild type epitopes were modelled using PEP-FOLD. Molecular docking and refinement assays were carried out using AutoDock Vina 4 and FlexPepDock. Five positively selected sites were found: S54 at HLA-A02 GC9, T84 at HLA-A02 SL9, S125 at HLA-B35 HY9, S173 at HLA-A02/B57 KS12 and I223 at HLA-B35 HA9. Although some mutations have been previously described as immune escape mutations, the majority of them have not been reported. Molecular docking/refinement analysis showed that one combination of mutations at GC9, one at SL9, and eight at HY9 epitopes could act as immune escape mutations. Moreover, HLA-A02-positive patients harbouring mutations at KS12, and HLA-B35-positive patients with mutations at HY9 have significantly higher plasma viral loads than patients lacking such mutations. Thus, HLA-A and -B alleles could be shaping the genetic diversity of HIV-1 through the selection of potential immune escape mutations.
高效抗逆转录病毒疗法(HAART)的引入显著提高了 HIV 感染患者的预期寿命;然而,它并不能从宿主中消除病毒,因此治愈这种感染至关重要。一些策略采用了诱导抗 HIV CD8 T 细胞的方法。然而,HIV-1 的高度遗传变异性是这些策略面临的最大障碍,因为在受人类白细胞抗原 I 类分子(HLA-I)限制的表位内发生的免疫逃逸突变会使这些细胞的抗病毒活性丧失。我们使用基于选择压力和对接/细化分析的生物信息学管道来确定这些突变。招募了 50 名 HIV-1 感染患者;使用序列特异性寡核苷酸方法对 HLA-A 和 HLA-B 等位基因进行定型,提取病毒 RNA 进行 HIV-1 gag 的扩增,然后对其进行批量测序并进行比对,以使用单似然祖先计数(SLAC)和快速无约束贝叶斯逼近(FUBAR)算法进行选择压力分析。阳性选择位点被映射到 HLA-I 特异性表位,并用 PEP-FOLD 对突变和野生型表位进行建模。使用 AutoDock Vina 4 和 FlexPepDock 进行分子对接和细化分析。发现了五个阳性选择位点:HLA-A02 GC9 上的 S54、HLA-A02 SL9 上的 T84、HLA-B35 HY9 上的 S125、HLA-A02/B57 KS12 上的 S173 和 HLA-B35 HA9 上的 I223。尽管一些突变已被描述为免疫逃逸突变,但大多数突变尚未报道。分子对接/细化分析表明,GC9 上的一种突变组合、SL9 上的一种突变组合和 HY9 表位上的八种突变组合可能作为免疫逃逸突变。此外,携带 KS12 突变的 HLA-A02 阳性患者和携带 HY9 突变的 HLA-B35 阳性患者的血浆病毒载量明显高于没有这些突变的患者。因此,HLA-A 和 -B 等位基因可能通过选择潜在的免疫逃逸突变来塑造 HIV-1 的遗传多样性。