Suppr超能文献

通过调控性的选择性易位鉴定跨膜蛋白 TM4SF20 拓扑反转的关键残基。

Identification of residues critical for topology inversion of the transmembrane protein TM4SF20 through regulated alternative translocation.

机构信息

From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390.

Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.

出版信息

J Biol Chem. 2019 Apr 12;294(15):6054-6061. doi: 10.1074/jbc.RA119.007681. Epub 2019 Feb 26.

Abstract

Adopting a proper topology is crucial for transmembrane proteins to perform their functions. We previously reported that ceramide regulates a transmembrane protein called TM4SF20 (transmembrane 4 L six family member 20) through topological inversion by altering the direction through which the protein is translocated across membranes during translation. This regulatory mechanism, denoted regulated alternative translocation (RAT), depends on a GN motif present in the first transmembrane helix of TM4SF20. Here, using site-directed mutagenesis, we show that Asn-26 in the motif is crucial for RAT of TM4SF20, as it cannot be replaced even by Gln. In contrast, Gly-22 in the motif could be substituted by other small residues such as Ala and Ser without affecting RAT of TM4SF20. We further demonstrate that the GN motif alone is insufficient to induce RAT of a transmembrane protein because TM4SF4, a relative of TM4SF20 that also contains the motif in the first transmembrane helix, did not undergo RAT. Using TM4SF40-TM4SF20 chimeras, we identified Pro-29 of TM4SF20 as another important element required for RAT of the protein. Substituting Pro-29 alone did not affect RAT of TM4SF20, whereas replacing Pro-29 together with either Leu-25 or Val-17 of TM4SF20 with the corresponding residues of TM4SF4 abolished RAT of TM4SF20. Because Val-17, Gly-22, Leu-25, Asn-26, and Pro-29 are predicted to reside along the same surface of the transmembrane helix, our results suggest that interactions with other proteins mediated by this surface during translocation may be critical for RAT of TM4SF20.

摘要

采用适当的拓扑结构对于跨膜蛋白发挥其功能至关重要。我们之前报道过,神经酰胺通过改变蛋白在翻译过程中跨膜移位的方向,调节一种称为 TM4SF20(跨膜 4 L 六家族成员 20)的跨膜蛋白,从而使其发生拓扑倒置。这种调节机制被称为受调控的选择性易位(RAT),依赖于 TM4SF20 第一个跨膜螺旋中存在的 GN 基序。在这里,我们通过定点突变实验表明,基序中的天冬酰胺 26 对于 TM4SF20 的 RAT 至关重要,因为即使突变为谷氨酰胺也不能替代。相比之下,基序中的甘氨酸 22 可以被其他小残基如丙氨酸和丝氨酸替代,而不会影响 TM4SF20 的 RAT。我们进一步证明,仅 GN 基序不足以诱导跨膜蛋白的 RAT,因为 TM4SF4,即 TM4SF20 的相对蛋白,其第一个跨膜螺旋中也含有该基序,但不会发生 RAT。通过 TM4SF40-TM4SF20 嵌合体,我们确定了 TM4SF20 中的脯氨酸 29 是该蛋白 RAT 所需的另一个重要元件。单独替换脯氨酸 29 不会影响 TM4SF20 的 RAT,而将 TM4SF20 中的脯氨酸 29 与亮氨酸 25 或缬氨酸 17 一起替换为 TM4SF4 的相应残基则会使 TM4SF20 的 RAT 失效。因为缬氨酸 17、甘氨酸 22、亮氨酸 25、天冬酰胺 26 和脯氨酸 29 被预测位于跨膜螺旋的同一表面上,所以我们的结果表明,在易位过程中,与其他蛋白的相互作用可能对 TM4SF20 的 RAT 至关重要。

相似文献

2
Inverting the Topology of a Transmembrane Protein by Regulating the Translocation of the First Transmembrane Helix.
Mol Cell. 2016 Aug 18;63(4):567-578. doi: 10.1016/j.molcel.2016.06.032. Epub 2016 Aug 4.
3
Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation).
J Biol Chem. 2020 Jul 24;295(30):10271-10280. doi: 10.1074/jbc.REV120.012669. Epub 2020 Jun 2.
6
Topological regulation of a transmembrane protein by luminal-to-cytosolic retrotranslocation of glycosylated sequence.
Cell Rep. 2023 Apr 25;42(4):112311. doi: 10.1016/j.celrep.2023.112311. Epub 2023 Mar 26.
8
Structural organization and interactions of transmembrane domains in tetraspanin proteins.
BMC Struct Biol. 2005 Jun 28;5:11. doi: 10.1186/1472-6807-5-11.

引用本文的文献

2
Topological regulation of a transmembrane protein by luminal-to-cytosolic retrotranslocation of glycosylated sequence.
Cell Rep. 2023 Apr 25;42(4):112311. doi: 10.1016/j.celrep.2023.112311. Epub 2023 Mar 26.
3
Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer.
Front Mol Biosci. 2020 Aug 18;7:202. doi: 10.3389/fmolb.2020.00202. eCollection 2020.
4
Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation).
J Biol Chem. 2020 Jul 24;295(30):10271-10280. doi: 10.1074/jbc.REV120.012669. Epub 2020 Jun 2.

本文引用的文献

1
A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core.
J Mol Biol. 2018 Jul 20;430(15):2237-2243. doi: 10.1016/j.jmb.2017.12.007. Epub 2017 Dec 16.
2
Detergent Lysis of Tissue Culture Cells for Immunoprecipitation.
Cold Spring Harb Protoc. 2017 Dec 1;2017(12):pdb.prot098558. doi: 10.1101/pdb.prot098558.
4
Non-AUG translation: a new start for protein synthesis in eukaryotes.
Genes Dev. 2017 Sep 1;31(17):1717-1731. doi: 10.1101/gad.305250.117.
5
Structural and Mechanistic Insights into Protein Translocation.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:369-390. doi: 10.1146/annurev-cellbio-100616-060439. Epub 2017 May 31.
6
Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.
J Biol Chem. 2017 Feb 3;292(5):1613-1624. doi: 10.1074/jbc.M116.765719. Epub 2016 Dec 14.
7
Inverting the Topology of a Transmembrane Protein by Regulating the Translocation of the First Transmembrane Helix.
Mol Cell. 2016 Aug 18;63(4):567-578. doi: 10.1016/j.molcel.2016.06.032. Epub 2016 Aug 4.
8
Sustained induction of collagen synthesis by TGF-β requires regulated intramembrane proteolysis of CREB3L1.
PLoS One. 2014 Oct 13;9(10):e108528. doi: 10.1371/journal.pone.0108528. eCollection 2014.
9
Agonist-bound structure of the human P2Y12 receptor.
Nature. 2014 May 1;509(7498):119-22. doi: 10.1038/nature13288.
10
Structure of the human P2Y12 receptor in complex with an antithrombotic drug.
Nature. 2014 May 1;509(7498):115-8. doi: 10.1038/nature13083. Epub 2014 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验