Feng Guoqiang, Zhang Wei-Xiong, Dong Liyuan, Li Wei, Cai Weizhao, Wei Wenjuan, Ji Lijun, Lin Zheshuai, Lu Peixiang
School of Materials Science and Engineering , Nankai University , Tianjin 300350 , China . Email:
Department of Physics and Mechanical & Electrical Engineering , Hubei University of Education , Wuhan 430205 , China.
Chem Sci. 2018 Dec 4;10(5):1309-1315. doi: 10.1039/c8sc03291b. eCollection 2019 Feb 7.
Very few materials expand two-dimensionally under pressure, and this extremely rare phenomenon, namely negative area compressibility (NAC), is highly desirable for technological applications in pressure sensors and actuators. Hitherto, the few known NAC materials have dominantly been limited to 2D crystals bonded coordination interactions while other 2D systems have not been explored yet. Here, we report the large NAC of a hydrogen-bonded 2D supramolecular coordination complex, Zn(CHCOO)·2HO, with a synergistic microscopic mechanism. Our findings reveal that such an unusual phenomenon, over a wide pressure range of 0.15-4.44 GPa without the occurrence of any phase transitions, arises from the complex cooperation of intra-layer coordination and hydrogen-bonding interactions, and inter-layer van der Waals forces. In addition, we propose that these NAC crystals could have important applications as pressure-converting materials in ultrasensitive pressure sensing devices.
极少数材料在压力下会二维膨胀,这种极其罕见的现象,即负面积压缩性(NAC),在压力传感器和致动器的技术应用中非常受欢迎。迄今为止,少数已知的NAC材料主要限于通过配位相互作用键合的二维晶体,而其他二维体系尚未得到探索。在此,我们报道了一种具有协同微观机制的氢键二维超分子配位络合物Zn(CH₃COO)₂·2H₂O的大NAC。我们的研究结果表明,这种不寻常的现象在0.15 - 4.44 GPa的宽压力范围内出现,且未发生任何相变,是由层内配位和氢键相互作用以及层间范德华力的复杂协同作用引起的。此外,我们提出这些NAC晶体作为超灵敏压力传感装置中的压力转换材料可能具有重要应用。