Li Xiang, Tolbert W David, Hu Hong-Gang, Gohain Neelakshi, Zou Yan, Niu Fan, He Wang-Xiao, Yuan Weirong, Su Jia-Can, Pazgier Marzena, Lu Wuyuan
School of Pharmacy , Second Military Medical University , Shanghai 200433 , China.
Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . Email:
Chem Sci. 2018 Nov 30;10(5):1522-1530. doi: 10.1039/c8sc03275k. eCollection 2019 Feb 7.
Two major pharmacological hurdles severely limit the widespread use of small peptides as therapeutics: poor proteolytic stability and membrane permeability. Importantly, low aqueous solubility also impedes the development of peptides for clinical use. Various elaborate side chain stapling chemistries have been developed for α-helical peptides to circumvent this problem, with considerable success in spite of inevitable limitations. Here we report a novel peptide stapling strategy based on the dithiocarbamate chemistry linking the side chains of residues Lys() and Cys( + 4) of unprotected peptides and apply it to a series of dodecameric peptide antagonists of the p53-inhibitory oncogenic proteins MDM2 and MDMX. Crystallographic studies of peptide-MDM2/MDMX complexes structurally validated the chemoselectivity of the dithiocarbamate staple bridging Lys and Cys at (, + 4) positions. One dithiocarbamate-stapled PMI derivative, PMI, showed a 50-fold stronger binding to MDM2 and MDMX than its linear counterpart. Importantly, in contrast to PMI and its linear derivatives, the PMI peptide actively traversed the cell membrane and killed HCT116 tumor cells by activating the tumor suppressor protein p53. Compared with other known stapling techniques, our solution-based DTC stapling chemistry is simple, cost-effective, regio-specific and environmentally friendly, promising an important new tool for the development of peptide therapeutics with improved pharmacological properties including aqueous solubility, proteolytic stability and membrane permeability.
蛋白水解稳定性差和膜通透性低。重要的是,低水溶性也阻碍了用于临床的肽的开发。已经为α-螺旋肽开发了各种精细的侧链钉合化学方法来解决这个问题,尽管存在不可避免的局限性,但仍取得了相当大的成功。在这里,我们报告了一种基于二硫代氨基甲酸盐化学的新型肽钉合策略,该策略连接未保护肽的赖氨酸()和半胱氨酸(+4)残基的侧链,并将其应用于一系列p53抑制致癌蛋白MDM2和MDMX的十二聚体肽拮抗剂。肽-MDM2/MDMX复合物的晶体学研究在结构上验证了二硫代氨基甲酸盐钉在(,+4)位置桥接赖氨酸和半胱氨酸的化学选择性。一种二硫代氨基甲酸盐钉合的PMI衍生物PMI与MDM2和MDMX的结合力比其线性对应物强50倍。重要的是,与PMI及其线性衍生物不同,PMI肽能主动穿过细胞膜,并通过激活肿瘤抑制蛋白p53杀死HCT116肿瘤细胞。与其他已知的钉合技术相比,我们基于溶液的DTC钉合化学方法简单、经济高效、区域特异性强且环保,有望成为开发具有改善药理学性质(包括水溶性、蛋白水解稳定性和膜通透性)的肽治疗药物的重要新工具。