Suppr超能文献

一种用于治疗多种软组织肉瘤组织学亚型的新型候选药物:一种使用与生存相关的基因特征进行药物再利用的计算方法。

Novel drug candidate for the treatment of several soft‑tissue sarcoma histologic subtypes: A computational method using survival‑associated gene signatures for drug repurposing.

机构信息

Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.

Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.

出版信息

Oncol Rep. 2019 Apr;41(4):2241-2253. doi: 10.3892/or.2019.7033. Epub 2019 Feb 26.

Abstract

Systemic treatment options for soft tissue sarcomas (STSs) have remained unchanged despite the need for novel drug candidates to improve STS outcomes. Drug repurposing involves the application of clinical drugs to different diseases, reducing development time, and cost. It has also become a fast and effective way to identify drug candidates. The present study used a computational method to screen three drug‑gene interaction databases for novel drug candidates for the treatment of several common STS histologic subtypes through drug repurposing. STS survival‑associated genes were generated by conducting a univariate cox regression analysis using The Cancer Genome Atlas survival data. These genes were then applied to three databases (the Connectivity Map, the Drug Gene Interaction Database and the L1000 Fireworks Display) to identify drug candidates for STS treatment. Additionally, pathway analysis and molecular docking were conducted to evaluate the molecular mechanisms of the candidate drug. Bepridil was identified as a potential candidate for several STS histologic subtype treatments by overlapping the screening results from three drug‑gene interaction databases. The pathway analysis with the Kyoto Encyclopedia of Genes and Genomes predicted that Bepridil may target CRK, fibroblast growth factor receptor 4 (FGFR4), laminin subunit β1 (LAMB1), phosphoinositide‑3‑kinase regulatory subunit 2 (PIK3R2), WNT5A, cluster of differentiation 47 (CD47), elastase, neutrophil expressed (ELANE), 15‑hydroxyprostaglandin dehydrogenase (HPGD) and protein kinase cβ (PRKCB) to suppress STS development. Further molecular docking simulation suggested a relatively stable binding selectivity between Bepridil and eight proteins (CRK, FGFR4, LAMB1, PIK3R2, CD47, ELANE, HPGD, and PRKCB). In conclusion, a computational method was used to identify Bepridil as a potential candidate for the treatment of several common STS histologic subtypes. Experimental validation of these in silico results is necessary before clinical translation can occur.

摘要

软组织肉瘤 (STS) 的系统治疗选择尽管需要新的候选药物来改善 STS 结果,但仍保持不变。药物再利用涉及将临床药物应用于不同的疾病,从而缩短开发时间和降低成本。它也已成为识别候选药物的快速有效方法。本研究使用计算方法筛选了三个药物-基因相互作用数据库,通过药物再利用为几种常见的 STS 组织学亚型寻找新的治疗候选药物。通过使用癌症基因组图谱生存数据进行单变量 cox 回归分析生成了 STS 生存相关基因。然后将这些基因应用于三个数据库(连接图谱、药物基因相互作用数据库和 L1000 烟花展示),以鉴定用于 STS 治疗的候选药物。此外,还进行了通路分析和分子对接,以评估候选药物的分子机制。通过重叠三个药物-基因相互作用数据库的筛选结果,确定了贝尼地平是几种 STS 组织学亚型治疗的潜在候选药物。京都基因与基因组百科全书的通路分析预测,贝尼地平可能靶向 CRK、成纤维细胞生长因子受体 4 (FGFR4)、层粘连蛋白亚基β1 (LAMB1)、磷酸肌醇-3-激酶调节亚基 2 (PIK3R2)、WNT5A、分化簇 47 (CD47)、弹性蛋白酶、中性粒细胞表达 (ELANE)、15-羟前列腺素脱氢酶 (HPGD) 和蛋白激酶 cβ (PRKCB),以抑制 STS 的发展。进一步的分子对接模拟表明,贝尼地平与 8 种蛋白质(CRK、FGFR4、LAMB1、PIK3R2、CD47、ELANE、HPGD 和 PRKCB)之间具有相对稳定的结合选择性。总之,使用计算方法鉴定贝尼地平是治疗几种常见 STS 组织学亚型的潜在候选药物。在进行临床转化之前,需要对这些计算机模拟结果进行实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4570/6412453/7630cdbef8b5/OR-41-04-2241-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验