Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, 75013 Paris, France.
Institute for Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
RNA. 2019 Jun;25(6):657-668. doi: 10.1261/rna.069708.118. Epub 2019 Feb 28.
Next-generation sequencing is an increasingly popular and efficient approach to characterize the full set of microRNAs (miRNAs) present in human biosamples. MiRNAs' detection and quantification still remain a challenge as they can undergo different posttranscriptional modifications and might harbor genetic variations (polymiRs) that may impact on the alignment step. We present a novel algorithm, OPTIMIR, that incorporates biological knowledge on miRNA editing and genome-wide genotype data available in the processed samples to improve alignment accuracy. OPTIMIR was applied to 391 human plasma samples that had been typed with genome-wide genotyping arrays. OPTIMIR was able to detect genotyping errors, suggested the existence of novel miRNAs and highlighted the allelic imbalance expression of polymiRs in heterozygous carriers. OPTIMIR is written in python, and freely available on the GENMED website (http://www.genmed.fr/index.php/fr/) and on Github (github.com/FlorianThibord/OptimiR).
下一代测序是一种越来越流行和高效的方法,用于描述人类生物样本中存在的全部 microRNAs (miRNAs)。miRNAs 的检测和定量仍然是一个挑战,因为它们可能经历不同的转录后修饰,并且可能携带遗传变异(多态 miRNA),这可能会影响比对步骤。我们提出了一种新的算法 OPTIMIR,它结合了 miRNA 编辑的生物学知识和处理样本中可用的全基因组基因型数据,以提高比对准确性。OPTIMIR 应用于 391 个人血浆样本,这些样本已经用全基因组基因分型阵列进行了基因分型。OPTIMIR 能够检测到基因分型错误,提示新的 miRNAs 的存在,并突出杂合子携带者中多态 miRNA 的等位基因失衡表达。OPTIMIR 是用 python 编写的,可在 GENMED 网站(http://www.genmed.fr/index.php/fr/)和 Github(github.com/FlorianThibord/OptimiR)上免费获得。