Physics Department, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany.
Max Planck Institute of Quantum Optics, D-85748 Garching, Germany.
Phys Rev Lett. 2019 Feb 8;122(5):053002. doi: 10.1103/PhysRevLett.122.053002.
Theoretical studies indicated that C_{60} exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1 fs=10^{-15} s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C_{60} in an intense 3.6 μm laser field. A prolate molecular elongation along the laser polarization axis is determined to be (6.1±1.4)% via both angular- and energy-resolved measurements of electrons that are released, driven back, and diffracted from the molecule within the same laser field. The observed deformation is confirmed by density functional theory simulations of nuclear dynamics on time-dependent adiabatic states and indicates a nonadiabatic excitation of the h_{g}(1) prolate-oblate mode. The results demonstrate the applicability of laser-driven electron diffraction methods for studying macromolecular structural dynamics in four dimensions with atomic time and spatial resolutions.
理论研究表明,C_{60} 暴露在线偏振强红外脉冲下会经历周期性笼状结构变形,典型周期约为 100 fs(1 fs=10^{-15} s)。在这里,我们使用先前为原子和小分子开发的激光驱动自成像电子衍射技术,在强 3.6 μm 激光场中测量 C_{60} 激光诱导的变形。通过对在同一激光场中从分子中释放、驱动回和衍射的电子进行角度和能量分辨测量,确定分子沿激光偏振轴的长轴伸长率为(6.1±1.4)%。通过对含时绝热态上核动力学的密度泛函理论模拟,证实了这种变形,并表明 h_{g}(1) 扁长变形模式的非绝热激发。结果表明,激光驱动的电子衍射方法适用于在原子时间和空间分辨率下以四维方式研究大分子结构动力学。