Group of Research in Applied Thermal Engineering-CREVER, Mechanical Engineering Dept, Universitat Rovira i Virgili, Tarragona, Spain; Analytical and Organic Chemistry Dept, Universitat Rovira i Virgili, Tarragona, Spain.
Group of Research in Applied Thermal Engineering-CREVER, Mechanical Engineering Dept, Universitat Rovira i Virgili, Tarragona, Spain.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 May 15;215:88-96. doi: 10.1016/j.saa.2019.02.090. Epub 2019 Feb 22.
We rank the expected solubilities of ammonia in three hydroxyl ionic liquids - [HOEMIm][BF], [HOEMIm][NTf] and [Ch][NTf] - in the temperature range 20-105 °C by analyzing the cations and anions available for interaction with ammonia. As this availability depends on ion-pair formation in ionic liquids, in this paper it is evaluated using the concentration and spectral profiles recovered in the analysis of their near infrared spectra by the multivariate resolution curve - alternating least squares method. The results indicate that the main effect of temperature on ion pairs is to decrease the number of structural configurations with cooperative hydrogen bonds between cation and cation, although in a lesser extent the number of cation-anion interactions increases. Regardless of the type of ionic liquid cation, the cation-anion interactions are higher in the tetrafluorborate ionic liquid than in the imide ionic liquid, hydroxyl imidazolium or choline. Assuming that the solubility of ammonia is limited by the concentration profile values representative of the cation-cation interactions, we deduce that at temperatures higher than 80 °C, ammonia solubility increases in the following order [HOEMIm][BF4] < [HOEMIm][NTf2] < [Ch][NTf2]. At lower temperatures, this order varies with the ammonia concentration in the NH3/ILs mixtures considered. We deduce that if the ammonia concentration is relatively low, the ammonia solubility will be governed by the evolution of cation-anion interaction in the ionic liquids and the solubility order is the same as at higher temperatures. However, when the ammonia concentration is higher, the ammonia solubility in the [Ch][NTf2] ionic liquid is lower than in the hydroxyl-ionic liquids. This conclusion is supported by the experimental vapor-liquid equilibria (VLE) data of ammonia-/ILs mixtures with ammonia mass fractions between 0.2 and 0.8.
我们通过分析可与氨相互作用的阳离子和阴离子,对氨在三种羟基离子液体——[HOEMIm][BF]、[HOEMIm][NTf] 和 [Ch][NTf] 中的预期溶解度在 20-105°C 温度范围内进行了排序。由于这种可用性取决于离子液体中的离子对形成,因此本文使用多元分辨曲线-交替最小二乘法分析其近红外光谱时恢复的浓度和光谱谱图来评估其可用性。结果表明,温度对离子对的主要影响是降低阳离子与阳离子之间具有协同氢键的结构构象数量,尽管在较小程度上阳离子-阴离子相互作用的数量增加。无论离子液体阳离子的类型如何,四氟硼酸盐离子液体中的阳离子-阴离子相互作用都高于酰胺离子液体、羟基咪唑鎓或胆碱。假设氨的溶解度受代表阳离子-阳离子相互作用的浓度分布值的限制,我们推断在高于 80°C 的温度下,氨的溶解度按以下顺序增加[HOEMIm][BF4] < [HOEMIm][NTf2] < [Ch][NTf2]。在较低的温度下,此顺序随所考虑的 NH3/ILs 混合物中氨的浓度而变化。我们推断,如果氨的浓度相对较低,则氨的溶解度将受离子液体中阳离子-阴离子相互作用的演化控制,并且溶解度顺序与较高温度下相同。然而,当氨的浓度较高时,[Ch][NTf2]离子液体中的氨溶解度低于羟基离子液体中的溶解度。这一结论得到了氨/ILs 混合物的实验汽液平衡(VLE)数据的支持,这些混合物的氨质量分数在 0.2 到 0.8 之间。