Atangana Abdon, Mekkaoui Toufik
Institute for Groundwater Studies, Faculty of Natural and Agricultural Science, University of the Free State, Bloemfontein 9300, South Africa.
Département de Mathématiques, Université Moulay Ismaïl, Faculté des Sciences et Techniques, B.P. 509, Boutalamine, Errachidia, Morocco.
Chaos. 2019 Feb;29(2):023103. doi: 10.1063/1.5085927.
The composite operator has been used in functional analysis with a clear application in real life. Nevertheless, a pure mathematical concept becomes very useful if one can apply it to solve real world problems. Modeling chaotic phenomena, for example, has been a concern of many researchers, and several methods have been suggested to capture some of them. The concept of fractional differentiation has also been used to capture more natural phenomena. Now, in elementary school, when composing two functions, we obtain a new function with different properties. We now ask when we compose two equations, could we a get new dynamics? Could we capture new natural problems? In this work, we make use of the composite operator to create a new kind of chaotic attractors built from two different attractors. In the linear case, we obtain integro-differential equations (classical and fractional) in the Caputo-Fabrizio case. We suggested a new numerical scheme to solve these new equations using finite difference, Simpson, and Lagrange polynomial approximations. Without loss of generality, we solve some examples with exact solutions and compare them with our proposed numerical scheme. The results of the comparison leave no doubt to believe that the proposed method is highly accurate as the error is of the order of 10.
复合算子已在泛函分析中使用,在现实生活中有明确的应用。然而,如果一个纯数学概念能够应用于解决现实世界的问题,那么它就会变得非常有用。例如,对混沌现象进行建模一直是许多研究人员关注的问题,并且已经提出了几种方法来捕捉其中的一些现象。分数阶微分的概念也被用于捕捉更多自然现象。现在,在小学阶段,当我们将两个函数进行复合时,会得到一个具有不同性质的新函数。我们现在要问,当我们将两个方程进行复合时,能否得到新的动力学?能否捕捉到新的自然问题?在这项工作中,我们利用复合算子创建了一种由两个不同吸引子构建的新型混沌吸引子。在线性情况下,在卡普托 - 法布里齐奥情形中我们得到了积分 - 微分方程(经典的和分数阶的)。我们提出了一种新的数值方案,使用有限差分、辛普森和拉格朗日多项式逼近法来求解这些新方程。在不失一般性的情况下,我们求解了一些具有精确解的例子,并将它们与我们提出的数值方案进行比较。比较结果毫无疑问地表明,所提出的方法具有很高的精度,因为误差约为10的量级。