Suppr超能文献

基于导航的 4D MRI 中用于减少采集时间的图像插值方法。

An image interpolation approach for acquisition time reduction in navigator-based 4D MRI.

机构信息

Biomedical Image Computing Group, ETH Zurich, Switzerland.

Biomedical Image Computing Group, ETH Zurich, Switzerland.

出版信息

Med Image Anal. 2019 May;54:20-29. doi: 10.1016/j.media.2019.02.008. Epub 2019 Feb 13.

Abstract

Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices can be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convolutional neural network (CNN) based method for temporal interpolation, with motion field prediction as an intermediate step. The proposed formulation incorporates the prior knowledge that a motion field underlies changes in the image intensities over time. Previous approaches that interpolate directly in the intensity space are prone to produce blurry images or even remove structures in the images. Our method avoids such problems and faithfully preserves the information in the image. Further, an important advantage of our formulation is that it provides an unsupervised estimation of bi-directional motion fields. These motion fields can potentially be used to halve the number of registrations required during 4D reconstruction, thus substantially reducing the reconstruction time. These advantages are achieved while preserving 4D reconstruction quality as compared to that with the true navigators.

摘要

导航 2D 多层动态磁共振(MR)成像能够在自由呼吸时实现高对比度 4D MR 成像,并为治疗计划和指导提供体内观察。在这种方法中,导航片对于 2D 数据片的回溯堆叠至关重要。然而,它们也延长了采集过程。可以使用导航片的时间插值来减少导航采集的数量,而不会降低堆叠的特异性。在这项工作中,我们提出了一种基于卷积神经网络(CNN)的时间插值方法,运动场预测是中间步骤。所提出的公式结合了这样一个先验知识,即运动场是图像强度随时间变化的基础。以前直接在强度空间中进行插值的方法容易产生模糊的图像,甚至会去除图像中的结构。我们的方法避免了这些问题,并忠实地保留了图像中的信息。此外,我们的公式的一个重要优点是,它提供了双向运动场的无监督估计。这些运动场可能被用于将 4D 重建过程中所需的配准数量减半,从而大大减少重建时间。与真实导航器相比,在保持 4D 重建质量的同时,实现了这些优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验