Suppr超能文献

利用卫生系统和公共数据确定粮食不安全家庭的资源获取情况。

Determining Food-Insecure Families' Resource Access with Health System and Public Data.

作者信息

Palakshappa Deepak, Strane Douglas, Griffis Heather, Fiks Alexander G

出版信息

J Health Care Poor Underserved. 2019;30(1):265-279. doi: 10.1353/hpu.2019.0020.

Abstract

Families' access to local food-insecurity (FI) resources differs. This study examines how health system and public data may be combined to identify limitations in community resources designed to address FI. We conducted a retrospective cohort study using electronic health record (EHR) data from nine practices that screened families for FI. Electronic health record data included demographic and clinical characteristics. Publicly available data included local socioeconomic and food resource information. We calculated the distance from each household to the nearest food pantry and determined the percentage of families who might have difficulty accessing resources. We demonstrate how health systems could merge these data sources to map where food-insecure families live, describe families' access to local resources, and identify regions where gaps in services exist. Health systems could use this approach to support households with FI and advocate for additional services in areas lacking resources in order to target population health efforts.

摘要

家庭获取当地粮食不安全(FI)资源的情况各不相同。本研究探讨了如何将卫生系统数据和公共数据相结合,以识别旨在解决粮食不安全问题的社区资源中的局限性。我们使用来自九家对家庭进行粮食不安全筛查的医疗机构的电子健康记录(EHR)数据进行了一项回顾性队列研究。电子健康记录数据包括人口统计学和临床特征。公开可用的数据包括当地社会经济和食物资源信息。我们计算了每个家庭到最近的食品储藏室的距离,并确定了可能难以获取资源的家庭比例。我们展示了卫生系统如何合并这些数据源,以绘制粮食不安全家庭的居住地图,描述家庭获取当地资源的情况,并识别存在服务缺口的地区。卫生系统可以采用这种方法来支持有粮食不安全问题的家庭,并在缺乏资源的地区倡导提供更多服务,以便将人群健康工作有的放矢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验