Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam.
Laboratoire de Biochimie Theorique , UPR 9080 CNRS, IBPC, Universite Paris , 7, 13 rue Pierre et Marie Curie , 75005 Paris , France.
J Phys Chem B. 2019 Mar 28;123(12):2645-2653. doi: 10.1021/acs.jpcb.8b10792. Epub 2019 Mar 19.
Amyloid β (Aβ) peptides are considered the major causative agents of Alzheimer's disease (AD). In a widely accepted mechanism for AD pathogenesis, Aβ peptides are proposed to play multiple roles in damaging brain cells and their synaptic communications. Due to the heterogeneous nature of Aβ oligomers, their in vivo structures have not been understood. Most experimental and computational studies favored β-rich structures of Aβ as observed in Aβ fibrils. In this in silico study, we investigated an alternative perspective on the structures and function of Aβ oligomers in the cell membrane. Transmembrane α-helix bundles of the Aβ tetramer and trimer were observed in extensive temperature replica exchange molecular dynamics (REMD) simulations. We observed three minima on the free-energy landscape of each oligomer, namely, A, B, and C for the tetramer and D, E, and F for the trimer. Except for F, the minima consist of 4 or 3 parallel helices spanning across the membrane model dipalmitoylphosphatidylcholine. Replica exchange molecular dynamics-umbrella sampling (REMD-US) simulation was applied to study the process of a Ca crossing the pore formed by the α-helix bundles in A-E in comparison to that in a calcium channel and a proton channel. REMD-US reveals that A, C, and D allow Ca to cross their pore with a free-energy barrier comparable to that found for the calcium channel. In contrast, the free-energy barrier of a Ca ion crossing B, E, and the proton channel is significantly higher. This result suggests that Aβ peptide oligomers could form transmembrane α-helix bundles that provide feasible pathways for Ca transport. This is an intriguing observation that will stimulate further studies.
淀粉样蛋白 β (Aβ) 肽被认为是阿尔茨海默病 (AD) 的主要致病因子。在广泛接受的 AD 发病机制中,Aβ 肽被认为在损伤脑细胞及其突触通讯方面发挥多种作用。由于 Aβ 低聚物的异质性,其体内结构尚未被理解。大多数实验和计算研究都倾向于 Aβ 纤维中观察到的富含β的 Aβ 结构。在这项计算机研究中,我们研究了 Aβ 寡聚物在细胞膜中的结构和功能的另一种观点。在广泛的温度交换分子动力学 (REMD) 模拟中观察到 Aβ 四聚体和三聚体的跨膜α-螺旋束。我们观察到每个寡聚物的自由能景观上有三个最小值,即四聚体的 A、B 和 C,以及三聚体的 D、E 和 F。除了 F,这些最小值由跨越模型二棕榈酰磷脂酰胆碱的 4 或 3 个平行螺旋组成。应用 replica exchange molecular dynamics-umbrella sampling (REMD-US) 模拟来研究 Ca 穿过 A-E 中 α-螺旋束形成的孔的过程,与钙通道和质子通道进行比较。REMD-US 表明,A、C 和 D 允许 Ca 穿过其孔,其自由能屏障与钙通道相当。相比之下,B、E 和质子通道中 Ca 离子穿过的自由能屏障要高得多。这一结果表明,Aβ 肽寡聚物可以形成跨膜α-螺旋束,为 Ca 转运提供可行的途径。这是一个有趣的观察结果,将激发进一步的研究。