Kim Rockli, Swaminathan Akshay, Kumar Rakesh, Xu Yun, Blossom Jeffrey C, Venkataramanan R, Kumar Alok, Joe William, Subramanian S V
Harvard Center for Population & Development Studies, 9 Bow Street, Cambridge, MA 02138, USA.
Department of Statistics, Harvard College, Cambridge, MA, USA.
SSM Popul Health. 2019 Feb 10;7:100375. doi: 10.1016/j.ssmph.2019.100375. eCollection 2019 Apr.
In India, data on key developmental indicators used to formulate policies and interventions are routinely available for the administrative unit of districts but not for the political unit of parliamentary constituencies (PC). Recently, Swaminathan et al. proposed two methodologies to generate PC estimates using randomly displaced GPS locations of the sampling clusters ('direct') and by building a crosswalk between districts and PCs using boundary shapefiles ('indirect'). We advance these methodologies by using precision-weighted estimations based on hierarchical logistic regression modeling to account for the complex survey design and sampling variability. We exemplify this application using the latest National Family Health Survey (NFHS, 2016) to generate PC-level estimates for two important indicators of child malnutrition - stunting and low birth weight - that are being monitored by the Government of India for the National Nutrition Mission targets. Overall, we found a substantial variation in child malnutrition across 543 PCs. The different methodologies yielded highly consistent estimates with correlation ranging r = 0.92-0.99 for stunting and r = 0.81-0.98 for low birth weight. For analyses involving data with comparable nature to the NFHS (i.e., complex data structure and possibility to identify a potential PC membership), modeling for precision-weighted estimates and direct methodology are preferable. Further field work and data collection at the PC level are necessary to accurately validate our estimates. An ideal solution to overcome this gap in data for PCs would be to make PC identifiers available in routinely collected surveys and the Census.
在印度,用于制定政策和干预措施的关键发展指标数据通常可获取到行政区一级(即地区),但无法获取到政治区一级(即议会选区,简称PC)的数据。最近,斯瓦米纳坦等人提出了两种方法来生成议会选区的估计值,一种是使用抽样群集的随机位移全球定位系统位置(“直接法”),另一种是利用边界形状文件在地区和议会选区之间建立交叉对照表(“间接法”)。我们基于分层逻辑回归模型使用精确加权估计法改进了这些方法,以考虑复杂的调查设计和抽样变异性。我们以最新的全国家庭健康调查(NFHS,2016年)为例进行了此项应用,以生成印度政府为国家营养使命目标所监测的儿童营养不良两个重要指标——发育迟缓率和低体重出生率——的议会选区一级估计值。总体而言,我们发现543个议会选区的儿童营养不良情况存在很大差异。不同方法得出的估计值高度一致,发育迟缓率的相关性范围为r = 0.92 - 0.99,低体重出生率的相关性范围为r = 0.81 - 0.98。对于涉及与全国家庭健康调查具有可比性质的数据(即复杂的数据结构以及能够确定潜在的议会选区成员资格)的分析,精确加权估计建模和直接法更为可取。有必要在议会选区一级开展进一步的实地工作和数据收集,以准确验证我们的估计值。克服议会选区数据这一差距的理想解决方案是在常规收集的调查和人口普查中提供议会选区标识符。