Suppr超能文献

里波列萨绵羊产羔分布分析。I. 圆形 von Mises 模型的建立与比较。

Analysis of lambing distribution in the Ripollesa sheep breed. I. Development and comparison of circular von Mises models.

机构信息

Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

出版信息

Animal. 2019 Oct;13(10):2133-2139. doi: 10.1017/S1751731119000363. Epub 2019 Mar 6.

Abstract

Circular data originates in a wide range of scientific fields and can be analyzed on the basis of directional statistics and special distributions wrapped around the circumference. However, both propensity to transform non-linear to linear data and complexity of directional statistics limited the generalization of the circular paradigm in the animal breeding framework, among others. Here, we generalized a circular mixed (CM) model within the context of Bayesian inference. Three different parametrizations with different hierarchical structures were developed on basis of the von Mises distribution; moreover, both goodness of fit and predictive ability from each parametrization were compared through the analyses of 110 116 lambing distribution records collected from Ripollesa sheep herds between 1976 and 2017. The naive circular (NC) model only accounted for population mean and homogeneous circular variance, and reached the lowest goodness-of-fit and predictive ability. The CM model assumed a hierarchical structure for the population mean by accounting for systematic (ewe age and lambing interval) and permanent environmental sources of variation (flock-year-season and ewe). This improved goodness of fit by reducing both the deviance information criterion (DIC; -2520 units) and the mean square error (MSE; -12.4%) between simulated and predicted lambing data when compared against the NC model. Finally, the last parametrization expanded CM model by also assuming a hierarchical structure with systematic and permanent environmental factors for the variance parameter of the von Mises distribution (i.e. circular canalization (CC) model). This last model reached the best goodness of fit to lambing distribution data with a DIC estimate 5425 units lower than the one for NC model (MSE reduced 13.2%). The same pattern revealed when models were compared in terms of predictive ability. The superiority revealed by CC model emphasized the relevance of heteroskedasticity for the analysis of lambing distribution in the Ripollesa breed, and suggested potential applications for the sheep industry, even genetic selection for canalization. The development of CM models on the basis of the von Mises distribution has allowed to integrate flexible hierarchical structures accounting for different sources of variation and affecting both mean and dispersion terms. This must be viewed as a useful statistical tool with multiple applications in a wide range of research fields, as well as the livestock industry. The next mandatory step should be the inclusion of genetic terms in the hierarchical structure of the models in order to evaluate their potential contribution to current selection programs.

摘要

循环数据起源于广泛的科学领域,可以基于方向统计学和围绕圆周的特殊分布进行分析。然而,循环范式在动物育种框架中的推广受到了将非线性数据转化为线性数据的倾向和方向统计学的复杂性的限制。在这里,我们在贝叶斯推理的背景下推广了一种圆形混合(CM)模型。基于 von Mises 分布,开发了三种具有不同层次结构的不同参数化;此外,通过分析 1976 年至 2017 年从里波列萨羊群收集的 110116 次产羔分布记录,比较了每种参数化的拟合优度和预测能力。原始的圆形(NC)模型仅考虑了群体平均值和均匀的圆形方差,达到了最低的拟合优度和预测能力。CM 模型通过考虑系统(母羊年龄和产羔间隔)和永久环境变异源(羊群-年份-季节和母羊)来假设群体平均值的层次结构。与 NC 模型相比,这通过减少偏差信息准则(DIC;-2520 个单位)和模拟与预测产羔数据之间的均方误差(MSE;-12.4%)来提高拟合优度。最后,最后一个参数化通过还假设 von Mises 分布方差参数(即圆形运河化(CC)模型)具有系统和永久环境因素的层次结构,扩展了 CM 模型。该模型的拟合优度最高,与 NC 模型相比,DIC 估计值低 5425 个单位(MSE 降低 13.2%)。当根据预测能力对模型进行比较时,也出现了相同的模式。CC 模型的优越性强调了 Ripollesa 品种产羔分布分析中异方差的相关性,并为绵羊产业提出了潜在的应用,甚至是运河化的遗传选择。基于 von Mises 分布开发 CM 模型允许整合灵活的层次结构,以考虑影响平均值和离散度的不同变异源。这必须被视为一种在广泛的研究领域以及畜牧业中具有多种应用的有用统计工具。下一步的强制性步骤应该是在模型的层次结构中包含遗传术语,以评估它们对当前选择计划的潜在贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验