Suppr超能文献

由 MoS/N 掺杂还原氧化石墨烯稳定的超细 Pt 纳米颗粒作为醇氧化和氧还原反应的耐用电催化剂。

Ultrafine Pt Nanoparticles Stabilized by MoS/N-Doped Reduced Graphene Oxide as a Durable Electrocatalyst for Alcohol Oxidation and Oxygen Reduction Reactions.

机构信息

Department of Energy and Chemical Engineering , Incheon National University , 119 Academy-ro , Yeonsu-Gu, Incheon 22012 , Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12504-12515. doi: 10.1021/acsami.9b00192. Epub 2019 Mar 19.

Abstract

Direct alcohol fuel cells play a pivotal role in the synthesis of catalysts because of their low cost, high catalytic activity, and long durability in half-cell reactions, which include anode (alcohol oxidation) and cathode (oxygen reduction) reactions. However, platinum catalysts suffer from CO tolerance, which affects their stability. The present study focuses on ultrafine Pt nanoparticles stabilized by flowerlike MoS/N-doped reduced graphene oxide (Pt@MoS/NrGO) architecture, developed via a facile and cost-competitive approach that was performed through the hydrothermal method followed by the wet-reflux strategy. Fourier transform infrared spectra, X-ray diffraction patterns, Raman spectra, X-ray photoelectron spectra, field-emission scanning electron microscopy, and transmission electron microscopy verified the conversion to Pt@MoS/NrGO. Pt@MoS/NrGO was applied as a potential electrocatalyst toward the anode reaction (liquid fuel oxidation) and the cathode reaction (oxygen reduction). In the anode reaction, Pt@MoS/NrGO showed superior activity toward electro-oxidation of methanol, ethylene glycol, and glycerol with mass activities of 448.0, 158.0, and 147.0 mA/mg, respectively, approximately 4.14, 2.82, and 3.34 times that of a commercial Pt-C (20%) catalyst. The durability of the Pt@MoS/NrGO catalyst was tested via 500 potential cycles, demonstrating less than 20% of catalytic activity loss for alcohol fuels. In the cathode reaction, oxygen reduction reaction results showed excellent catalytic activity with higher half-wave potential at 0.895 V versus a reversible hydrogen electrode for Pt@MoS/NrGO. The durability of the Pt@MoS/NrGO catalyst was tested via 30 000 potential cycles and showed only 15 mV reduction in the half-wave potential, whereas the Pt@NrGO and Pt-C catalysts experienced a much greater shift (Pt@NrGO, ∼23 mV; Pt-C, ∼20 mV).

摘要

直接醇燃料电池在催化剂合成中起着至关重要的作用,因为它们在半电池反应中具有低成本、高催化活性和长耐久性,包括阳极(醇氧化)和阴极(氧还原)反应。然而,铂催化剂存在 CO 耐受性问题,这影响了其稳定性。本研究关注的是通过一种简便且具有成本竞争力的方法,即通过水热法和湿回流策略制备的由花状 MoS/N 掺杂还原氧化石墨烯稳定的超细微 Pt 纳米粒子(Pt@MoS/NrGO)结构。傅里叶变换红外光谱、X 射线衍射图案、拉曼光谱、X 射线光电子能谱、场发射扫描电子显微镜和透射电子显微镜验证了 Pt@MoS/NrGO 的转化。Pt@MoS/NrGO 被用作潜在的电催化剂,用于阳极反应(液体燃料氧化)和阴极反应(氧还原)。在阳极反应中,Pt@MoS/NrGO 对甲醇、乙二醇和甘油的电氧化表现出优异的活性,其质量活性分别为 448.0、158.0 和 147.0 mA/mg,分别是商业 Pt-C(20%)催化剂的 4.14、2.82 和 3.34 倍。Pt@MoS/NrGO 催化剂的耐久性通过 500 个电位循环测试,证明对于醇燃料的催化活性损失小于 20%。在阴极反应中,氧还原反应结果表明 Pt@MoS/NrGO 具有优异的催化活性,其相对于可逆氢电极的半波电位为 0.895 V。Pt@MoS/NrGO 催化剂的耐久性通过 30000 个电位循环测试,仅观察到半波电位降低了 15 mV,而 Pt@NrGO 和 Pt-C 催化剂的电位降低了更大(Pt@NrGO,约 23 mV;Pt-C,约 20 mV)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验