Amsterdam Samuel H, Stanev Teodor K, Zhou Qunfei, Lou Alexander J-T, Bergeron Hadallia, Darancet Pierre, Hersam Mark C, Stern Nathaniel P, Marks Tobin J
Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States.
Center for Light Energy Activated Redox Processes , Evanston , Illinois 60208 , United States.
ACS Nano. 2019 Apr 23;13(4):4183-4190. doi: 10.1021/acsnano.8b09166. Epub 2019 Mar 20.
Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) - MoS heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunction-specific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.
混合维度异质结,例如沉积在二维(2D)过渡金属二硫属化物(TMDC)上的零维(0D)有机分子,通常表现出能够增强各组成层性质的界面效应。在此,我们报道了一项关于金属酞菁(MPc)-MoS异质结中界面电荷转移的系统研究,该研究使用光吸收和拉曼光谱来阐明M核(M = 第一排过渡金属)、MoS层数和激发波长的影响。观察到的现象包括异质结特有的光吸收跃迁的出现以及取决于M特性的强烈拉曼增强。此外,拉曼增强可通过激发激光波长和MoS层数进行调节,相对于SiO衬底,最终达到最大增强因子30倍。这些实验结果与密度泛函理论(DFT)计算相结合,表明非前沿MPc轨道与MoS能带结构之间存在强耦合,以及异质结界面上的电荷转移随MPc电子结构而变化。