Suppr超能文献

用于高效吸附U(VI)的超薄磷酸铁纳米片

Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption.

作者信息

Wang De, Xu Yanbin, Xiao Difei, Qiao Qingan, Yin Ping, Yang Zhenglong, Li Jiaxing, Winchester William, Wang Zhe, Hayat Tasawar

机构信息

School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.

School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.

出版信息

J Hazard Mater. 2019 Jun 5;371:83-93. doi: 10.1016/j.jhazmat.2019.02.091. Epub 2019 Feb 25.

Abstract

In this study, the ultra-thin iron phosphate Fe(PO) nanosheets (FP1) with fine-controlled morphology, has been designed as a new two-dimensional (2D) material for uranium adsorption. Due to its unique high accessible 2D structure, atom-dispersed phosphate/iron anchor groups and high specific surface area (27.77 m⋅g), FP1 shows an extreme-high U(VI) adsorption capacity (704.23 mg·g at 298 K, pH = 5.0 ± 0.1), which is about 27 times of conventional 3D Fe(PO) (24.51 mg·g -sample FP2) and higher than most 2D absorbent materials, showing a great value in the treatment of radioactive wastewater. According to the adsorption results, the sorption between U(VI) and FP1 is spontaneous and endothermic, and can be conformed to single molecular layer adsorption. Based on the analyses of FESEM, EDS, Mapping, FT-IR and XRD after adsorption, the possibile adsorption mechanism can be described as a Monolayer Surface Complexation and Stacking mode (MSCS-Mode). Additionally, the research not only provide a novel preparing method for 2D phosphate materials but also pave a new pathway to study other two-dimensional adsorption materials.

摘要

在本研究中,具有精细可控形貌的超薄磷酸铁Fe(PO)纳米片(FP1)被设计为一种用于铀吸附的新型二维(2D)材料。由于其独特的高可及二维结构、原子分散的磷酸盐/铁锚定基团和高比表面积(27.77 m²·g⁻¹),FP1表现出极高的U(VI)吸附容量(在298 K、pH = 5.0 ± 0.1时为704.23 mg·g⁻¹),约为传统三维Fe(PO)(样品FP2为24.51 mg·g⁻¹)的27倍,且高于大多数二维吸附材料,在放射性废水处理中具有巨大价值。根据吸附结果,U(VI)与FP1之间的吸附是自发且吸热的,并且符合单分子层吸附。基于吸附后FESEM、EDS、Mapping、FT-IR和XRD的分析,可能的吸附机制可描述为单层表面络合和堆积模式(MSCS模式)。此外,该研究不仅为二维磷酸盐材料提供了一种新颖的制备方法,也为研究其他二维吸附材料开辟了一条新途径。

相似文献

1
Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption.
J Hazard Mater. 2019 Jun 5;371:83-93. doi: 10.1016/j.jhazmat.2019.02.091. Epub 2019 Feb 25.
2
Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater.
J Hazard Mater. 2021 Jul 5;413:125282. doi: 10.1016/j.jhazmat.2021.125282. Epub 2021 Jan 30.
4
"One-can" strategy for the synthesis of hydrothermal biochar modified with phosphate groups and efficient removal of uranium(VI).
J Environ Radioact. 2023 Jul;263:107182. doi: 10.1016/j.jenvrad.2023.107182. Epub 2023 Apr 23.
5
Phosphorylated hollow carbon-based material derived from ZIF-8 and its U(VI) adsorptive performance.
Environ Sci Pollut Res Int. 2024 Mar;31(14):22073-22086. doi: 10.1007/s11356-024-32448-1. Epub 2024 Feb 24.
6
Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment.
Sci Total Environ. 2019 Dec 1;694:133697. doi: 10.1016/j.scitotenv.2019.133697. Epub 2019 Aug 1.
7
A robust prediction of U(VI) sorption on FeO/activated carbon composites with surface complexation model.
Environ Res. 2020 Jun;185:109467. doi: 10.1016/j.envres.2020.109467. Epub 2020 Apr 3.
8
Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling.
Chemosphere. 2021 Jul;274:129743. doi: 10.1016/j.chemosphere.2021.129743. Epub 2021 Jan 27.
9
In Situ Anchoring of Pyrrhotite on Graphitic Carbon Nitride Nanosheet for Efficient Immobilization of Uranium.
Chemistry. 2019 Jan 7;25(2):590-597. doi: 10.1002/chem.201804289. Epub 2018 Dec 11.
10
Flexible self-supporting NaMnTi(PO)@C fibers for uranium extraction from seawater by electro sorption.
J Hazard Mater. 2024 Jan 5;461:132664. doi: 10.1016/j.jhazmat.2023.132664. Epub 2023 Sep 28.

引用本文的文献

1
Advancements in Biochar as a Sustainable Adsorbent for Water Pollution Mitigation.
Adv Sci (Weinh). 2025 May;12(19):e2410383. doi: 10.1002/advs.202410383. Epub 2025 Apr 17.
2
Zeolitic Imidazole Framework (ZIF)-Sponge Composite for Highly Efficient U(VI) Elimination.
Molecules. 2024 Jan 15;29(2):408. doi: 10.3390/molecules29020408.
5
Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe-U precipitates by zero-valent iron.
Environ Sci Pollut Res Int. 2020 Feb;27(5):5584-5594. doi: 10.1007/s11356-019-07306-0. Epub 2019 Dec 18.
6
A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties.
Environ Sci Pollut Res Int. 2020 Feb;27(4):3933-3949. doi: 10.1007/s11356-019-06949-3. Epub 2019 Dec 10.

本文引用的文献

1
Influence of carbonate on sequestration of U(VI) on perovskite.
J Hazard Mater. 2019 Feb 15;364:100-107. doi: 10.1016/j.jhazmat.2018.10.035. Epub 2018 Oct 13.
3
Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution.
Environ Pollut. 2018 Sep;240:493-505. doi: 10.1016/j.envpol.2018.04.136. Epub 2018 May 11.
5
Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance.
Environ Pollut. 2018 Jul;238:725-738. doi: 10.1016/j.envpol.2018.03.092. Epub 2018 Apr 3.
8
Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of U(VI) and Am(III).
Environ Sci Technol. 2017 Nov 7;51(21):12274-12282. doi: 10.1021/acs.est.7b02745. Epub 2017 Oct 19.
9
Measurement and Surface Complexation Modeling of U(VI) Adsorption to Engineered Iron Oxide Nanoparticles.
Environ Sci Technol. 2017 Aug 15;51(16):9219-9226. doi: 10.1021/acs.est.7b01649. Epub 2017 Jul 27.
10
New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions.
Environ Sci Technol. 2017 Aug 15;51(16):9227-9234. doi: 10.1021/acs.est.7b02431. Epub 2017 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验