Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F75005 Paris, France.
PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
J Chem Phys. 2019 Mar 7;150(9):094504. doi: 10.1063/1.5082731.
Although molten carbonates only represent, at most, a very minor phase in the Earth's mantle, they are thought to be implied in anomalous high-conductivity zones in its upper part (70-350 km). Besides, the high electrical conductivity of these molten salts is also exploitable in fuel cells. Here, we report quantitative calculations of their properties, over a large range of thermodynamic conditions and chemical compositions, which are a requisite to develop technological devices and to provide a better understanding of a number of geochemical processes. To model molten carbonates by atomistic simulations, we have developed an optimized classical force field based on experimental data of the literature and on the liquid structure issued from ab initio molecular dynamics simulations performed by ourselves. In implementing this force field into a molecular dynamics simulation code, we have evaluated the thermodynamics (equation of state and surface tension), the microscopic liquid structure and the transport properties (diffusion coefficients, electrical conductivity, and viscosity) of molten alkali carbonates (LiCO, NaCO, KCO, and some of their binary and ternary mixtures) from the melting point up to the thermodynamic conditions prevailing in the Earth's upper mantle (∼1100-2100 K, 0-15 GPa). Our results are in very good agreement with the data available in the literature. To our knowledge, a reliable molecular model for molten alkali carbonates covering such a large domain of thermodynamic conditions, chemical compositions, and physicochemical properties has never been published yet.
虽然熔融碳酸盐在地球地幔中最多只占很小的一部分,但它们被认为与上地幔中异常高导电性带有关(70-350 公里)。此外,这些熔融盐的高导电性在燃料电池中也可以利用。在这里,我们报告了它们在很大热力学条件和化学成分范围内的性质的定量计算,这是开发技术设备的必要条件,并提供了对许多地球化学过程的更好理解。为了通过原子模拟来模拟熔融碳酸盐,我们根据文献中的实验数据和我们自己进行的从头分子动力学模拟得出的液体结构,开发了一个优化的经典力场。在将这个力场实施到分子动力学模拟代码中时,我们评估了熔融碱碳酸盐(LiCO、NaCO、KCO 及其一些二元和三元混合物)的热力学(状态方程和表面张力)、微观液体结构和输运性质(扩散系数、电导率和粘度),从熔点到地球上地幔中存在的热力学条件(约 1100-2100 K,0-15 GPa)。我们的结果与文献中可用的数据非常吻合。据我们所知,一个可靠的熔融碱碳酸盐分子模型,涵盖了如此大的热力学条件、化学成分和物理化学性质的范围,以前从未发表过。