Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Olomouc, Czech Republic.
Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic, Olomouc, Czech Republic.
Leuk Res. 2019 Apr;79:60-68. doi: 10.1016/j.leukres.2019.02.005. Epub 2019 Feb 19.
Better risk-stratification of patients with chronic lymphocytic leukemia (CLL) and identification of subsets of ultra-high-risk (HR)-CLL patients are crucial in the contemporary era of an expanded therapeutic armamentarium for CLL.
A multivariate patient similarity network and clustering was applied to assess the prognostic values of routine genetic, laboratory, and clinical factors and to identify subsets of ultra-HR-CLL patients. The study cohort consisted of 116 HR-CLL patients (F/M 36/80, median age 63 yrs) carrying del(11q), del(17p)/TP53 mutations and/or complex karyotype (CK) at the time of diagnosis.
Three major subsets based on the presence of key prognostic variables as genetic aberrations, bulky lymphadenopathy, splenomegaly, and gender: profile (P)-I (n = 34, men/women with CK + no del(17p)/TP53 mutations), P-II (n = 47, predominantly men with del(11q) + no CK + no del(17p)/TP53 mutations), and P-III (n = 35, men/women with del(17p)/TP53 mutations, with/without del(11q) and CK) were revealed. Subanalysis of major subsets identified three ultra-HR-CLL groups: men with TP53 disruption with/without CK, women with TP53 disruption with CK and men/women with CK + del(11q) with poor short-term outcomes (25% deaths/12 mo). Besides confirming the combinations of known risk-factors, the used patient similarity network added further refinement of subsets of HR-CLL patients who may profit from different targeted drugs.
This study showed for the first time in hemato-oncology the usefulness of the multivariate patient similarity networks for stratification of HR-CLL patients. This approach shows the potential for clinical implementation of precision medicine, which is especially important in view of an armamentarium of novel targeted drugs.
在慢性淋巴细胞白血病(CLL)治疗手段不断扩展的当代,更好地对患者进行风险分层并确定超高风险(HR)-CLL 患者亚组至关重要。
应用多变量患者相似性网络和聚类来评估常规遗传、实验室和临床因素的预后价值,并确定超 HR-CLL 患者的亚组。该研究队列包括 116 例 HR-CLL 患者(男/女 36/80,中位年龄 63 岁),在诊断时携带 del(11q)、del(17p)/TP53 突变和/或复杂核型(CK)。
基于遗传异常、大肿块淋巴结病、脾肿大和性别等关键预后变量的存在,发现了三个主要的亚组:P-I 型(n=34,CK+无 del(17p)/TP53 突变的男性/女性)、P-II 型(n=47,主要为男性,del(11q) +无 CK+无 del(17p)/TP53 突变)和 P-III 型(n=35,del(17p)/TP53 突变的男性/女性,有/无 del(11q)和 CK)。对主要亚组的亚组分析确定了三个超 HR-CLL 组:男性伴 TP53 缺失,有/无 CK;女性伴 TP53 缺失,有 CK;男性/女性伴 CK+del(11q),短期预后不良(25%死亡/12 个月)。除了证实已知风险因素的组合外,使用的患者相似性网络还进一步细化了 HR-CLL 患者的亚组,这些亚组可能受益于不同的靶向药物。
本研究首次在血液肿瘤学中证明了多变量患者相似性网络在 HR-CLL 患者分层中的应用价值。这种方法显示了精准医学临床实施的潜力,这在新型靶向药物不断涌现的情况下尤为重要。