Suppr超能文献

用于磷磁共振波谱成像的压缩感知重建算法比较

Comparison of compressed sensing reconstruction algorithms for P magnetic resonance spectroscopic imaging.

作者信息

Santos-Díaz Alejandro, Noseworthy Michael D

机构信息

School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Imaging Research Center, St. Joseph's Healthcare, Hamilton, Ontario, Canada.

School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Imaging Research Center, St. Joseph's Healthcare, Hamilton, Ontario, Canada; Electrical and Computing Engineering, McMaster University, Hamilton, Ontario, Canada.

出版信息

Magn Reson Imaging. 2019 Jun;59:88-96. doi: 10.1016/j.mri.2019.03.006. Epub 2019 Mar 7.

Abstract

Phosphorus MR spectroscopy and spectroscopic imaging (P-MRS/MRSI) provide information about energy metabolism, membrane degradation and pH in vivo. In spite of their proven utility, P-MRS/MRSI are not often used primarily because of the challenges imposed by the low sensitivity and low concentration of metabolites leading to low signal to noise ratio (SNR), coarse spatial resolution and prolonged acquisition time. More recently there has been considerable interest in compressed sensing as an acceleration method for MR signal acquisition. This approach takes advantage of the intrinsic sparsity of the spectral data. In this work, we present a P-MRSI sequence that combines a flyback EPSI trajectory and compressed sensing, and we compared two different reconstruction methods, L1 norm minimization and low rank Hankel matrix completion. Our phantom results showed good preservation of spectral quality for both ×2.0 and ×3.0 acceleration factors, using both CS reconstruction methods. However, in vivo P-MRS brain data showed the low rank reconstruction approach was most suitable. Overall, this study shows the feasibility of combining a flyback EPSI trajectory and compressed sensing in the acquisition of P-MRSI as well as the better suitability of a low rank reconstruction approach.

摘要

磷磁共振波谱和波谱成像(P-MRS/MRSI)可提供有关体内能量代谢、膜降解和pH值的信息。尽管已证实其效用,但P-MRS/MRSI并不常用,主要原因是代谢物的低灵敏度和低浓度带来了挑战,导致信噪比(SNR)低、空间分辨率粗糙和采集时间延长。最近,压缩感知作为一种磁共振信号采集的加速方法引起了广泛关注。这种方法利用了光谱数据的内在稀疏性。在这项工作中,我们提出了一种结合回扫EPSI轨迹和压缩感知的P-MRSI序列,并比较了两种不同的重建方法,即L1范数最小化和低秩汉克尔矩阵补全。我们的体模结果表明,使用两种压缩感知重建方法,对于2.0倍和3.0倍的加速因子,光谱质量都能得到很好的保留。然而,体内P-MRS脑数据表明低秩重建方法最为合适。总体而言,本研究表明在采集P-MRSI时结合回扫EPSI轨迹和压缩感知的可行性,以及低秩重建方法的更好适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验