Suppr超能文献

新型切伦科夫探测器提高火山μ 射线照相术可行性研究

Feasibility Study of a New Cherenkov Detector for Improving Volcano Muography.

机构信息

Department of Physics and Astronomy "E. Maiorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy.

National Institute for Nuclear Physics (INFN), Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy.

出版信息

Sensors (Basel). 2019 Mar 8;19(5):1183. doi: 10.3390/s19051183.

Abstract

Muography is an expanding technique for internal structure investigation of large volume object, such as pyramids, volcanoes and also underground cavities. It is based on the attenuation of muon flux through the target in a way similar to the attenuation of X-ray flux through the human body for standard radiography. Muon imaging have to face with high background level, especially compared with the tiny near horizontal muon flux. In this paper the authors propose an innovative technique based on the measurement of Cherenkov radiation by Silicon photo-multipliers arrays to be integrated in a standard telescope for muography applications. Its feasibility study was accomplished by means of Geant4 simulations for the measurement of the directionality of cosmic-ray muons. This technique could be particularly useful for the suppression of background noise due to back-scattered particles whose incoming direction is likely to be wrongly reconstructed. The results obtained during the validation study of the technique principle confirm the ability to distinguish the arrival direction of muons with an efficiency higher than 98% above 1 GeV. In addition, a preliminary study on the tracking performance of the presented technique was introduced.

摘要

μ 子层析成像技术是一种用于大型物体内部结构探测的扩展技术,例如金字塔、火山以及地下洞穴等。它的原理类似于 X 射线透视技术,通过探测穿过目标的μ 子通量衰减来成像。与人体标准 X 射线透视相比,μ 子成像面临着更高的本底水平,尤其是与近水平μ 子通量相比。在本文中,作者提出了一种创新的技术,该技术基于硅光电倍增管阵列测量切伦科夫辐射,以便集成到用于 μ 子层析成像应用的标准望远镜中。通过使用 Geant4 模拟对宇宙射线μ 子的方向测量来完成了对该技术的可行性研究。由于反散射粒子的入射方向很可能被错误地重建,因此该技术对于抑制背景噪声特别有用,因为背景噪声主要来自反散射粒子。在对该技术原理进行验证研究期间获得的结果证实了能够以高于 1GeV 的效率区分μ 子的到达方向,效率高于 98%。此外,还介绍了对所提出的技术的跟踪性能的初步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a48/6427707/e75349e652e1/sensors-19-01183-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验