Suppr超能文献

在 N⁻TiO₂ 上耦合等离子体和助催化剂纳米颗粒用于可见光驱动的催化有机合成

Coupling Plasmonic and Cocatalyst Nanoparticles on N⁻TiO₂ for Visible-Light-Driven Catalytic Organic Synthesis.

作者信息

Wang Yannan, Chen Yu, Hou Qidong, Ju Meiting, Li Weizun

机构信息

College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

出版信息

Nanomaterials (Basel). 2019 Mar 7;9(3):391. doi: 10.3390/nano9030391.

Abstract

The use of the surface plasmon resonance (SPR) effect of plasmonic metal nanocomposites to promote photocarrier generation is a strongly emerging field for improving the catalytic performance under visible-light irradiation. In this study, a novel plasmonic photocatalyst, AuPt/N⁻TiO₂, was prepared via a photo-deposition⁻calcination technique. The Au nanoparticles (NPs) were used herein to harvest visible-light energy via the SPR effect, and Pt NPs were employed as a cocatalyst for trapping the energetic electrons from the semiconductor, leading to a high solar-energy conversion efficiency. The Au₂Pt₂/N⁻TiO₂ catalyst, herein with the irradiation wavelength in the range 460⁻800 nm, exhibited a reaction rate ~24 times greater than that of TiO₂, and the apparent quantum yield at 500 nm reached 5.86%, indicative of the successful functionalization of N⁻TiO₂ by the integration of Au plasmonic NPs and the Pt cocatalyst. Also, we investigated the effects of two parameters, light source intensity and wavelength, in photocatalytic reactions. It is indicated that the as-prepared AuPt/N⁻TiO₂ photocatalyst can cause selective oxidation of benzyl alcohol under visible-light irradiation with a markedly enhanced selectivity and yield.

摘要

利用等离子体金属纳米复合材料的表面等离子体共振(SPR)效应来促进光生载流子的产生,是提高可见光照射下催化性能的一个新兴领域。在本研究中,通过光沉积-煅烧技术制备了一种新型的等离子体光催化剂AuPt/N⁻TiO₂。本文中使用金纳米颗粒(NPs)通过SPR效应收集可见光能量,并使用铂纳米颗粒作为助催化剂来捕获来自半导体的高能电子,从而实现高太阳能转换效率。Au₂Pt₂/N⁻TiO₂催化剂在460⁻800nm的照射波长下,反应速率比TiO₂高约24倍,在500nm处的表观量子产率达到5.86%,这表明通过整合金等离子体纳米颗粒和铂助催化剂成功实现了N⁻TiO₂的功能化。此外,我们还研究了光催化反应中光源强度和波长这两个参数的影响。结果表明,所制备的AuPt/N⁻TiO₂光催化剂在可见光照射下可使苯甲醇发生选择性氧化,选择性和产率显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/202b/6473962/1eafa4a34ad2/nanomaterials-09-00391-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验