Novoselova Natalia G
1 N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences (IMM UB RAS), 16 S. Kovalevskaya Str., Yekaterinburg 620990, Russia.
2 Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 Mira Str., Yekaterinburg 620002, Russia.
J Bioinform Comput Biol. 2019 Feb;17(1):1940004. doi: 10.1142/S0219720019400043.
In this paper, a problem of chemotherapy of a malignant tumor is considered. Dynamics is piecewise monotone and a therapy function has two maxima. The aim of therapy is to minimize the number of tumor cells at the given final instance. The main result of this work is the construction of optimal feedbacks in the chemotherapy task. The construction of optimal feedback is based on the value function in the corresponding problem of optimal control (therapy). The value function is represented as a minimax generalized solution of the Hamilton-Jacobi-Bellman equation. It is proved that optimal feedback is a discontinuous function and the line of discontinuity satisfies the Rankin-Hugoniot conditions. Other results of the work are illustrative numerical examples of the construction of optimal feedbacks and Rankin-Hugoniot lines.
本文考虑了恶性肿瘤的化疗问题。动力学是分段单调的,且治疗函数有两个最大值。治疗的目的是在给定的最终时刻使肿瘤细胞数量最小化。这项工作的主要成果是在化疗任务中构建最优反馈。最优反馈的构建基于相应最优控制(治疗)问题中的值函数。值函数被表示为哈密顿 - 雅可比 - 贝尔曼方程的极小极大广义解。证明了最优反馈是一个不连续函数,且不连续线满足兰金 - 于戈尼奥条件。该工作的其他成果是最优反馈和兰金 - 于戈尼奥线构建的说明性数值示例。