Suppr超能文献

全国足球锦标赛的季节性线性预测。

Seasonal Linear Predictivity in National Football Championships.

机构信息

Fondazione Bruno Kessler, Povo, Italy.

出版信息

Big Data. 2019 Mar;7(1):21-34. doi: 10.1089/big.2018.0076.

Abstract

Predicting the results of sport matches and competitions is a growing research field, benefiting from the increasing amount of available data and novel data analytics techniques. Excellent forecasts can be achieved by advanced statistical and machine learning methods applied to detailed historical data, especially in very popular sports such as football (soccer). Here, we show that despite the large number of confounding factors, the results of a football team in longer competitions (e.g., a national league) follow a basically linear trend that is also useful for predictive purposes. In support of this claim, we present a set of experiments of linear regression compared to alternative approaches on a database collecting the yearly results of 746 teams playing in 22 divisions spanning up to five different levels from 11 countries, in 25 football seasons, for a total of 181,160 matches grouped in 9386 seasonal time series.

摘要

预测体育比赛和竞赛的结果是一个不断发展的研究领域,受益于可用数据量的增加和新的数据分析技术。通过将先进的统计和机器学习方法应用于详细的历史数据,可以实现出色的预测,尤其是在足球等非常受欢迎的运动中。在这里,我们表明,尽管存在大量混杂因素,但较长比赛(例如全国联赛)中足球队的结果遵循基本的线性趋势,这对于预测目的也很有用。为了支持这一说法,我们在一个数据库上进行了一系列线性回归实验,该数据库收集了来自 11 个国家的 746 支球队在 22 个分区中参加的 25 个足球赛季的每年结果,总共有 181160 场比赛分为 9386 个季节性时间序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验