Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
Nanoscale. 2019 Mar 28;11(13):6431-6444. doi: 10.1039/c9nr00421a.
van der Waals (vdW) heterostructures, achieved by binding various two-dimensional (2D) materials together via vdW interaction, expand the family of 2D materials and show fascinating possibilities. In this work, we have systematically investigated the geometrical structures, electronic structures, and optical properties of III-VI (MX, M = Ga, In and X = S, Se, Te) vdW heterostructures and their corresponding applications in sustainable energy related areas based on first principles calculations. It is highlighted that different heterostructure types can be achieved in spite of the similar electronic structures of MX monolayers. Meanwhile, the potential applications of the heterostructures for sustainable energy related areas have been further unraveled. For instance, type-II InS/GaSe and GaS/GaSe vdW heterostructures can separately produce hydrogen and oxygen at the opposite parts. On the other hand, a type-II GaSe/GaTe heterostructure with a direct band gap compatible with silicon has been proposed to be a potential solar cell material with a power conversion efficiency over 18%. Furthermore, a gapless type-IV semi-metallic InTe/GaS heterostructure has been predicted to be a Li-ion battery anode material based on three-step lithiated analysis. The present results will shed light on the sustainable energy applications of such remarkable artificial MX vdW heterostructures in the future.
范德华 (vdW) 异质结构通过范德华相互作用将各种二维 (2D) 材料结合在一起,扩展了二维材料家族,并展现出了引人入胜的可能性。在这项工作中,我们基于第一性原理计算系统地研究了 III-VI (MX,M = Ga、In 和 X = S、Se、Te) vdW 异质结构的几何结构、电子结构和光学性质,以及它们在可持续能源相关领域的潜在应用。值得强调的是,尽管 MX 单层具有相似的电子结构,但仍可以实现不同的异质结构类型。同时,进一步揭示了异质结构在可持续能源相关领域的潜在应用。例如,在类型-II InS/GaSe 和 GaS/GaSe vdW 异质结构中,可以在相反的部分分别产生氢气和氧气。另一方面,我们提出了一种具有与硅兼容的直接带隙的类型-II GaSe/GaTe 异质结构,作为一种具有超过 18%功率转换效率的潜在太阳能电池材料。此外,还预测了一种具有无带隙的 IV 型半金属 InTe/GaS 异质结构,基于三步锂化分析,它可以作为锂离子电池的阳极材料。本研究结果将为未来此类引人注目的人工 MX vdW 异质结构在可持续能源应用方面提供重要参考。