Taouali Walid, Casida Mark E, Znaidia Sami, Alimi Kamel
Laboratoire de Recherche (LR 18ES19), Synthèse Asymétrique et Ingénierie Moléculaire de Matériaux Organiques pour l'Electroniques Organiques, Faculté des Sciences de Monastir, Université de Monastir, 5000, Tunisia.
Laboratoire de Spectrométrie, Interactions et Chimie Théorique (SITh), Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Grenoble-Alpes, F-38041, Grenoble, France.
J Mol Graph Model. 2019 Jun;89:139-146. doi: 10.1016/j.jmgm.2019.03.014. Epub 2019 Mar 12.
In this work, we focus on designing a donor copolymer for the improvement of photovoltaic performance. Using density functional theory and time-dependent density functional theory, we investigated the electronic, optical and charge transfer properties of a series of new designed copolymers based on the reported copolymer Pa which is composed of a donor fluorene unit and an acceptor 4,7-dithien-2-yl-2,1,3-benzothiadiazole. We first obtained two copolymers Pb and Pc by replacing the benzothiadiazole (BTZ) with two different strong acceptors units to decrease the LUMO level of conjugated polymers. Then, we designed Pa, Pb and Pc copolymers by adding a substituent methyl group to the thiophene spacer unit (T). Bulk-heterojunction photovoltaic cells were designed with the copolymers as the donors and PCBM as the acceptor. Our results show that the cells based on Pb and Pc have a suitable electronic structure with energy conversion efficiency exceeding 10%. Moreover, we used Marcus theory to evaluate the intermolecular charge transfer (inter-CT) and recombination (inter-CR) rates of these cells (copolymer/PCBM). The ratio K/K of Pc/PCBM heterojunction is about 10 times higher than that of Pb/PCBM which clearly reveals that the designed donor molecule Pc will be a promising candidate for high performance organic photovoltaic devices. Our strategy to design novel donor copolymers provides a theoretical guideline for further improving in electrical, optical properties and the efficiency of the photovoltaic device.
在这项工作中,我们专注于设计一种供体共聚物以提高光伏性能。利用密度泛函理论和含时密度泛函理论,我们研究了一系列基于已报道的由供体芴单元和受体4,7 - 二噻吩 - 2 - 基 - 2,1,3 - 苯并噻二唑组成的共聚物Pa新设计的共聚物的电子、光学和电荷转移性质。我们首先通过用两种不同的强受体单元取代苯并噻二唑(BTZ)来降低共轭聚合物的最低未占分子轨道(LUMO)能级,从而得到两种共聚物Pb和Pc。然后,我们通过在噻吩间隔单元(T)上添加取代基甲基来设计Pa、Pb和Pc共聚物。以这些共聚物为供体、以苯基 - C61 - 丁酸甲酯(PCBM)为受体设计了本体异质结光伏电池。我们的结果表明,基于Pb和Pc的电池具有合适的电子结构,能量转换效率超过10%。此外,我们用马库斯理论评估了这些电池(共聚物/PCBM)的分子间电荷转移(inter - CT)和复合(inter - CR)速率。Pc/PCBM异质结的K/K比值比Pb/PCBM的约高10倍,这清楚地表明所设计的供体分子Pc将是高性能有机光伏器件的一个有前途的候选者。我们设计新型供体共聚物的策略为进一步改善光伏器件的电学、光学性质及效率提供了理论指导。