Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7071-7076. doi: 10.1073/pnas.1817222116. Epub 2019 Mar 19.
Parvalbumin-positive (PV+) interneurons play a pivotal role in orchestrating windows of experience-dependent brain plasticity during development. Critical period closure is marked by the condensation of a perineuronal net (PNN) tightly enwrapping subsets of PV+ neurons, both acting as a molecular brake on plasticity and maintaining mature PV+ cell signaling. As much of the molecular organization of PNNs exists at length scales near or below the diffraction limit of light microscopy, we developed a superresolution imaging and analysis platform to visualize the structural organization of PNNs and the synaptic inputs perforating them in primary visual cortex. We identified a structural trajectory of PNN maturation featuring a range of net structures, which was accompanied by an increase in Synaptotagmin-2 (Syt2) signals on PV+ cells suggestive of increased inhibitory input between PV+ neurons. The same structural trajectory was followed by PNNs both during normal development and under conditions of critical period delay by total sensory deprivation or critical period acceleration by deletion of , the causative gene for Rett syndrome, despite shifted maturation levels under these perturbations. Notably, superresolution imaging further revealed a decrease in Syt2 signals alongside an increase in vesicular glutamate transporter-2 signals on PV+ cells in -deficient animals, suggesting weaker recurrent inhibitory input between PV+ neurons and stronger thalamocortical excitatory inputs onto PV+ cells. These results imply a latent imbalanced circuit signature that might promote cortical silencing in Rett syndrome before the functional regression of vision.
钙结合蛋白阳性(PV+)中间神经元在发育过程中协调经验依赖性大脑可塑性的窗口中发挥着关键作用。关键期关闭的标志是围绕着 PV+神经元子集的神经周围网(PNN)的凝聚,两者都作为可塑性的分子制动器,并维持成熟的 PV+细胞信号转导。由于 PNN 的大部分分子组织存在于接近或低于光显微镜的衍射极限的长度尺度上,我们开发了一种超分辨率成像和分析平台,以可视化 PNN 的结构组织和穿透它们的突触输入在初级视觉皮层。我们确定了 PNN 成熟的结构轨迹,具有一系列的网络结构,这伴随着 PV+细胞上突触结合蛋白-2(Syt2)信号的增加,表明 PV+神经元之间的抑制性输入增加。在正常发育期间和在总感觉剥夺导致的关键期延迟或删除导致雷特综合征的基因导致的关键期加速的情况下,PNN 都遵循相同的结构轨迹,尽管在这些干扰下成熟水平发生了转移。值得注意的是,超分辨率成像进一步显示,在 -缺陷动物中,PV+细胞上的 Syt2 信号伴随着囊泡谷氨酸转运体-2信号的增加,表明 PV+神经元之间的递归抑制性输入减弱,而丘脑皮质兴奋性输入到 PV+细胞增强。这些结果暗示了一种潜在的不平衡的电路特征,可能会在视觉功能衰退之前促进雷特综合征中的皮质沉默。