Evolutionary Biology, Bielefeld University, Bielefeld, Germany.
Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland.
Mol Ecol. 2019 May;28(9):2321-2341. doi: 10.1111/mec.15077. Epub 2019 May 2.
Phenotypic plasticity can enable organisms to produce optimal phenotypes in multiple environments. A crucial life history trait that is often highly plastic is sex allocation, which in simultaneous hermaphrodites describes the relative investment into the male versus female sex functions. Theory predicts-and morphological evidence supports-that greater investment into the male function is favoured with increasing group size, due to the increasing importance of sperm competition for male reproductive success. Here, we performed a genome-wide gene expression assay to test for such sex allocation plasticity in a model simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. Based on RNA-Seq data from 16 biological replicates spanning four different group size treatments, we demonstrate that at least 10% of the >75,000 investigated transcripts in M. lignano are differentially expressed according to the social environment, rising to >30% of putative gonad-specific transcripts (spermatogenesis and oogenesis candidates) and tail-specific transcripts (seminal fluid candidates). This transcriptional response closely corresponds to the expected shift away from female and towards male reproductive investment with increasing sperm competition level. Using whole-mount in situ hybridization, we then confirm that many plastic transcripts exhibit the expected organ-specific expression, and RNA interference of selected testis- and ovary-specific candidates establishes that these indeed function in gametogenesis pathways. We conclude that a large proportion of sex-specific transcripts in M. lignano are differentially expressed according to the prevailing ecological conditions and that these are functionally relevant to key reproductive phenotypes. Our study thus begins to bridge organismal and molecular perspectives on sex allocation plasticity.
表型可塑性使生物能够在多种环境中产生最佳表型。性别分配是一种经常高度可塑的关键生活史特征,它在同时具有雌雄同体的生物中描述了相对投资于雄性和雌性性器官功能的情况。理论预测——形态学证据也支持这一观点——随着群体规模的增加,雄性生殖成功的精子竞争变得越来越重要,因此,更多地投资于雄性功能将受到青睐。在这里,我们对一种模型同时具有雌雄同体的自由生活扁虫 Macrostomum lignano 进行了全基因组基因表达分析,以测试这种性别分配的可塑性。基于来自 16 个生物重复的 RNA-Seq 数据,涵盖了四个不同的群体大小处理,我们证明,至少有 10%的 >75000 个研究转录本根据社会环境表现出差异表达,上升到 >30%的假定性腺特异性转录本(精子发生和卵子发生候选物)和尾部特异性转录本(精液候选物)。这种转录反应与预期的从雌性向雄性生殖投资的转变密切相关,随着精子竞争水平的增加。然后,我们使用全组织原位杂交技术,证实了许多可塑转录本确实具有预期的器官特异性表达,并且对选定的睾丸和卵巢特异性候选物进行 RNA 干扰,证实了这些候选物确实在配子发生途径中发挥作用。我们得出结论,Macrostomum lignano 中的大量性别特异性转录本根据流行的生态条件表现出差异表达,并且这些转录本在功能上与关键生殖表型相关。因此,我们的研究开始弥合性别分配可塑性的机体和分子观点。