Trautner Stefan, Lackner Johannes, Spendelhofer Wolfgang, Huber Norbert, Pedarnig Johannes D
Institute of Applied Physics , Johannes Kepler University , Altenberger Strasse 69 , A-4040 Linz , Austria.
KRAIBURG Austria GmbH & Co. KG , Webersdorf 11 , A-5132 Geretsberg , Austria.
Anal Chem. 2019 Apr 16;91(8):5200-5206. doi: 10.1021/acs.analchem.8b05879. Epub 2019 Mar 29.
The properties of natural and synthetic rubber critically depend on the concentration of the vulcanizing system, among others. Sulfur and zinc oxide are typically used as cross-linking and activating agents for the vulcanization reaction (0-3 wt %). We present an advanced spectroscopic method to chemically analyze the vulcanizing system in rubber under ambient conditions, and we demonstrate a novel application to measure the elements in-line of industrial rubber production. The laser-induced breakdown spectroscopy (LIBS) technique is optimized to ablate material from the surface of produced rubber sheets and to measure the optical emission of S and Zn from the rubber plasma in air. The sulfur lines in the near-infrared range are masked by molecular emission bands of the C-N radical and spectrally interfered by atomic lines of O. Plasma excitation in collinear double-pulse geometry and detection of plasma emission with time-gated detectors suppresses the spectroscopic overlays and enables to resolve the sulfur lines. For the determination of ZnO the weak Zn lines in the ultraviolet range are measured due to their superior intensity stability compared to the much stronger lines in the deeper UV. S and ZnO are quantified in three different rubber materials prepared from the most important polymers used in rubber production. The mean error of prediction of concentrations RMSEP is ≤0.07 wt % for S and ≤0.33 wt % for ZnO for all polymer types. Our results demonstrate that the vulcanizing system of rubber can be quantified under ambient conditions with LIBS. Other chemical elements could be analyzed also and the rubber production could be controlled employing this multielement detection technique as process analytical sensor.
天然橡胶和合成橡胶的性能在很大程度上取决于硫化体系的浓度等因素。硫和氧化锌通常用作硫化反应的交联剂和活化剂(0-3 wt%)。我们提出了一种先进的光谱方法,用于在环境条件下对橡胶中的硫化体系进行化学分析,并展示了一种在工业橡胶生产中在线测量元素的新应用。激光诱导击穿光谱(LIBS)技术经过优化,可从生产的橡胶片表面烧蚀材料,并测量空气中橡胶等离子体中硫和锌的光发射。近红外范围内的硫谱线被C-N自由基的分子发射带掩盖,并受到氧原子谱线的光谱干扰。共线双脉冲几何结构中的等离子体激发以及使用时间选通探测器检测等离子体发射可抑制光谱叠加,并能够分辨硫谱线。对于氧化锌的测定,由于紫外范围内较弱的锌谱线与更深紫外区域中更强的谱线相比具有更好的强度稳定性,因此对其进行测量。在由橡胶生产中使用的最重要聚合物制备的三种不同橡胶材料中对硫和氧化锌进行了定量分析。对于所有聚合物类型,硫的预测浓度的均方根误差(RMSEP)≤0.07 wt%,氧化锌的≤0.33 wt%。我们的结果表明,使用LIBS可以在环境条件下对橡胶的硫化体系进行定量分析。还可以分析其他化学元素,并且可以采用这种多元素检测技术作为过程分析传感器来控制橡胶生产。