Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City , USA.
Department of Toxicology, School of Public Health, Anhui Medical University , Hefei , China.
Autophagy. 2019 Nov;15(11):1954-1969. doi: 10.1080/15548627.2019.1596486. Epub 2019 Mar 30.
Impaired macroautophagy/autophagy has been implicated in experimental and human pancreatitis. However, the transcriptional control governing the autophagy-lysosomal process in pancreatitis is largely unknown. We investigated the role and mechanisms of TFEB (transcription factor EB), a master regulator of lysosomal biogenesis, in the pathogenesis of experimental pancreatitis. We analyzed autophagic flux, TFEB nuclear translocation, lysosomal biogenesis, inflammation and fibrosis in GFP-LC3 transgenic mice, acinar cell-specific knockout (KO) and and double-knockout (DKO) mice as well as human pancreatitis samples. We found that cerulein activated MTOR (mechanistic target of rapamycin kinase) and increased the levels of phosphorylated TFEB as well as pancreatic proteasome activities that led to rapid TFEB degradation. As a result, cerulein decreased the number of lysosomes resulting in insufficient autophagy in mouse pancreas. Pharmacological inhibition of MTOR or proteasome partially rescued cerulein-induced TFEB degradation and pancreatic damage. Furthermore, genetic deletion of specifically in mouse pancreatic acinar cells increased pancreatic edema, necrotic cell death, infiltration of inflammatory cells and fibrosis in pancreas after cerulein treatment. and DKO mice also developed spontaneous pancreatitis with increased pancreatic trypsin activities, edema and infiltration of inflammatory cells. Finally, decreased TFEB nuclear staining was associated with human pancreatitis. In conclusion, our results indicate a critical role of impaired TFEB-mediated lysosomal biogenesis in promoting the pathogenesis of pancreatitis. AC: acinar cell; AMY: amylase; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATP6V1B2: ATPase, H+ transporting, lysosomal V1 subunit B2; ATP6V1D: ATPase, H+ transporting, lysosomal V1 subunit D; ATP6V1H: ATPase, H+ transporting, lysosomal V1 subunit H; AV: autophagic vacuole; CDE: choline-deficient, ethionine-supplemented; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EM: electron microscopy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H & E: hematoxylin and eosin; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: normal donor; NEU: neutrophil; PPARGC1A/PGC1α: peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha; RIPA: radio-immunoprecipitation; RPS6: ribosomal protein S6; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TM: tamoxifen; WT: wild-type; ZG: zymogen granule.
自噬/自噬受损与实验性和人类胰腺炎有关。然而,胰腺炎中自噬-溶酶体过程的转录控制在很大程度上尚不清楚。我们研究了 TFEB(转录因子 EB)在实验性胰腺炎发病机制中的作用和机制,TFEB 是溶酶体生物发生的主要调节剂。我们分析了 GFP-LC3 转基因小鼠、腺泡细胞特异性 敲除 (KO) 和 和 双敲除 (DKO) 小鼠以及人类胰腺炎样本中的自噬流、TFEB 核易位、溶酶体生物发生、炎症和纤维化。我们发现,Cerulein 激活了 MTOR(雷帕霉素靶蛋白激酶)并增加了磷酸化 TFEB 的水平以及胰腺蛋白酶体活性,导致 TFEB 迅速降解。结果,Cerulein 减少了溶酶体的数量,导致小鼠胰腺中的自噬不足。雷帕霉素或蛋白酶体的药理学抑制部分挽救了 Cerulein 诱导的 TFEB 降解和胰腺损伤。此外,在胰腺腺泡细胞中特异性敲除 会增加 Cerulein 处理后胰腺的水肿、坏死性细胞死亡、炎症细胞浸润和纤维化。 和 DKO 小鼠也自发发生胰腺炎,胰腺胰蛋白酶活性、水肿和炎症细胞浸润增加。最后,TFEB 核染色减少与人类胰腺炎有关。总之,我们的结果表明,TFEB 介导的溶酶体生物发生受损在促进胰腺炎发病机制中起关键作用。 AC:腺泡细胞;AMY:淀粉酶;ATP6V1A:ATPase,H+转运,溶酶体 V1 亚基 A;ATP6V1B2:ATPase,H+转运,溶酶体 V1 亚基 B2;ATP6V1D:ATPase,H+转运,溶酶体 V1 亚基 D;ATP6V1H:ATPase,H+转运,溶酶体 V1 亚基 H;AV:自噬泡;CDE:胆碱缺乏,蛋氨酸补充;CLEAR:协调溶酶体表达和调节;CQ:氯喹;EIF4EBP1:真核翻译起始因子 4E 结合蛋白 1;EM:电子显微镜;GAPDH:甘油醛-3-磷酸脱氢酶;GFP:绿色荧光蛋白;H&E:苏木精和伊红;KO:敲除;LAMP1:溶酶体相关膜蛋白 1;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MAPK1/ERK2:丝裂原激活蛋白激酶 1;MTORC1:雷帕霉素靶蛋白激酶复合物 1;ND:正常供体;NEU:中性粒细胞;PPARGC1A/PGC1α:过氧化物酶体增殖物激活受体γ,共激活因子 1α;RIPA:放射性免疫沉淀;RPS6:核糖体蛋白 S6;SQSTM1/p62:自噬体 1;TFEB:转录因子 EB;TM:他莫昔芬;WT:野生型;ZG:酶原颗粒。
Cell Mol Gastroenterol Hepatol. 2020
Cell Mol Gastroenterol Hepatol. 2025-5-20
World J Psychiatry. 2025-4-19
Front Immunol. 2025-1-31
Biochem Biophys Res Commun. 2018-9-18
EMBO J. 2017-9-1
Autophagy. 2017-3-4