Suppr超能文献

靶向β-抑制蛋白的治疗潜力

Therapeutic Potential of Targeting ß-Arrestin.

作者信息

Bond Richard A, Lucero Garcia-Rojas Emilio Y, Hegde Akhil, Walker Julia K L

机构信息

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.

School of Nursing, Duke University, Durham, NC, United States.

出版信息

Front Pharmacol. 2019 Mar 6;10:124. doi: 10.3389/fphar.2019.00124. eCollection 2019.

Abstract

ß-arrestins are multifunctional proteins that modulate heptahelical 7 transmembrane receptors, also known as G protein-coupled receptors (GPCRs), a superfamily of receptors that regulate most physiological processes. ß-arrestin modulation of GPCR function includes termination of G protein-dependent signaling, initiation of ß-arrestin-dependent signaling, receptor trafficking to degradative or recycling pathways, receptor transactivation, transcriptional regulation, and localization of second messenger regulators. The pleiotropic influence ß-arrestins exert on these receptors regulates a breadth of physiological functions, and additionally, ß-arrestins are involved in the pathophysiology of numerous and wide-ranging diseases, making them prime therapeutic targets. In this review, we briefly describe the mechanisms by which ß-arrestins regulate GPCR signaling, including the functional cellular mechanisms modulated by ß-arrestins and relate this to observed pathophysiological responses associated with ß-arrestins. We focus on the role for ß-arrestins in transducing cell signaling; a pathway that is complementary to the classical G protein-coupling pathway. The existence of these GPCR dual signaling pathways offers an immense therapeutic opportunity through selective targeting of one signaling pathway over the other. Finally, we will consider several mechanisms by which the potential of dual signaling pathway regulation can be harnessed and the implications for improved disease treatments.

摘要

β-抑制蛋白是多功能蛋白质,可调节七螺旋跨膜受体,也称为G蛋白偶联受体(GPCR),这是一类调节大多数生理过程的受体超家族。β-抑制蛋白对GPCR功能的调节包括终止G蛋白依赖性信号传导、启动β-抑制蛋白依赖性信号传导、受体向降解或再循环途径转运、受体反式激活、转录调节以及第二信使调节剂的定位。β-抑制蛋白对这些受体产生的多效性影响调节了广泛的生理功能,此外,β-抑制蛋白还参与了众多广泛疾病的病理生理学过程,使其成为主要的治疗靶点。在本综述中,我们简要描述了β-抑制蛋白调节GPCR信号传导的机制,包括β-抑制蛋白调节的功能性细胞机制,并将其与观察到的与β-抑制蛋白相关的病理生理反应联系起来。我们重点关注β-抑制蛋白在转导细胞信号中的作用;这是一条与经典G蛋白偶联途径互补的途径。这些GPCR双信号通路的存在通过选择性靶向一种信号通路而非另一种信号通路提供了巨大的治疗机会。最后,我们将探讨几种利用双信号通路调节潜力的机制及其对改善疾病治疗的意义。

相似文献

1
Therapeutic Potential of Targeting ß-Arrestin.
Front Pharmacol. 2019 Mar 6;10:124. doi: 10.3389/fphar.2019.00124. eCollection 2019.
2
Arrestins and protein ubiquitination.
Prog Mol Biol Transl Sci. 2013;118:175-204. doi: 10.1016/B978-0-12-394440-5.00007-3.
3
Structural mechanism of GPCR-arrestin interaction: recent breakthroughs.
Arch Pharm Res. 2016 Mar;39(3):293-301. doi: 10.1007/s12272-016-0712-1. Epub 2016 Jan 29.
4
Therapeutic potential of β-arrestin- and G protein-biased agonists.
Trends Mol Med. 2011 Mar;17(3):126-39. doi: 10.1016/j.molmed.2010.11.004. Epub 2010 Dec 21.
5
The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling.
Pharmacol Rev. 2017 Jul;69(3):256-297. doi: 10.1124/pr.116.013367.
6
Arrestin recruitment and signaling by G protein-coupled receptor heteromers.
Neuropharmacology. 2019 Jul 1;152:15-21. doi: 10.1016/j.neuropharm.2018.11.010. Epub 2018 Nov 9.
7
Novel roles for arrestins in the post-endocytic trafficking of G protein-coupled receptors.
Life Sci. 2004 Jul 9;75(8):893-9. doi: 10.1016/j.lfs.2004.04.003.
8
Heptahelical terpsichory. Who calls the tune?
J Recept Signal Transduct Res. 2008;28(1-2):39-58. doi: 10.1080/10799890801941921.
9
β-arrestin-biased agonism at the parathyroid hormone receptor uncouples bone formation from bone resorption.
Endocr Metab Immune Disord Drug Targets. 2011 Jun;11(2):112-9. doi: 10.2174/187153011795564151.
10
The α-Arrestin ARRDC3 Is an Emerging Multifunctional Adaptor Protein in Cancer.
Antioxid Redox Signal. 2022 May;36(13-15):1066-1079. doi: 10.1089/ars.2021.0193. Epub 2022 Jan 4.

引用本文的文献

3
Combining Single-Cell RNA Sequencing and Mendelian Randomization to Explore Novel Drug Targets for Parkinson's Disease.
Mol Neurobiol. 2025 Jun;62(6):7380-7392. doi: 10.1007/s12035-025-04700-3. Epub 2025 Jan 31.
4
Adrenoceptor Desensitization: Current Understanding of Mechanisms.
Pharmacol Rev. 2024 May 2;76(3):358-387. doi: 10.1124/pharmrev.123.000831.
5
Rosacea pathogenesis and therapeutics: current treatments and a look at future targets.
Front Med (Lausanne). 2023 Dec 13;10:1292722. doi: 10.3389/fmed.2023.1292722. eCollection 2023.
6
β-Blockers in Hepatosplenic Schistosomiasis: A Narrative Review.
Am J Trop Med Hyg. 2023 Nov 6;109(6):1213-1219. doi: 10.4269/ajtmh.23-0437. Print 2023 Dec 6.
7
Investigation of adenosine A1 receptor-mediated β-arrestin 2 recruitment using a split-luciferase assay.
Front Pharmacol. 2023 May 30;14:1172551. doi: 10.3389/fphar.2023.1172551. eCollection 2023.
8
Beta-blockers in patients with liver cirrhosis: Pragmatism or perfection?
Front Med (Lausanne). 2023 Jan 9;9:1100966. doi: 10.3389/fmed.2022.1100966. eCollection 2022.
9
The association of polymorphisms with response to antidepressant treatment in depressed patients.
Front Pharmacol. 2022 Oct 26;13:974570. doi: 10.3389/fphar.2022.974570. eCollection 2022.

本文引用的文献

1
Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease.
JACC Basic Transl Sci. 2018 Aug 28;3(4):550-562. doi: 10.1016/j.jacbts.2017.12.002. eCollection 2018 Aug.
2
Identification of beta-arrestin-1 as a diagnostic biomarker in lung cancer.
Br J Cancer. 2018 Aug;119(5):580-590. doi: 10.1038/s41416-018-0200-0. Epub 2018 Aug 6.
3
Arrestins as rheostats of GPCR signalling.
Nat Rev Mol Cell Biol. 2018 Oct;19(10):615-616. doi: 10.1038/s41580-018-0041-y.
4
Emerging Roles of G Protein-Coupled Receptors in Hepatocellular Carcinoma.
Int J Mol Sci. 2018 May 4;19(5):1366. doi: 10.3390/ijms19051366.
5
Catalytic activation of β-arrestin by GPCRs.
Nature. 2018 May;557(7705):381-386. doi: 10.1038/s41586-018-0079-1. Epub 2018 May 2.
6
β-arrestin1-medieated inhibition of FOXO3a contributes to prostate cancer cell growth in vitro and in vivo.
Cancer Sci. 2018 Jun;109(6):1834-1842. doi: 10.1111/cas.13619. Epub 2018 May 26.
7
Structural Basis of Arrestin-Dependent Signal Transduction.
Trends Biochem Sci. 2018 Jun;43(6):412-423. doi: 10.1016/j.tibs.2018.03.005. Epub 2018 Apr 7.
8
Phosphoproteome profiling provides insight into the mechanism of action for carvedilol-mediated cancer prevention.
Mol Carcinog. 2018 Aug;57(8):997-1007. doi: 10.1002/mc.22820. Epub 2018 Apr 24.
9
β‑arrestin2 promotes 5‑FU‑induced apoptosis via the NF‑κB pathway in colorectal cancer.
Oncol Rep. 2018 Jun;39(6):2711-2720. doi: 10.3892/or.2018.6340. Epub 2018 Mar 30.
10
β-Arrestin1 mediates hMENA expression and ovarian cancer metastasis.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2856-2858. doi: 10.1073/pnas.1802643115. Epub 2018 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验