Suppr超能文献

压力依赖的 1-(苯并吡喃-1-基)-2-丁炔-1-酮的结构和发光性能。

Pressure-Dependent Structural and Luminescence Properties of 1-(Pyren-1-yl)but-2-yn-1-one.

机构信息

Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-096 Warsaw, Poland.

出版信息

Molecules. 2019 Mar 20;24(6):1107. doi: 10.3390/molecules24061107.

Abstract

The crystal structure of 1-(pyren-1-yl)but-2-yn-1-one ( 1 a , a polynuclear aromatic hydrocarbon displaying enhanced luminescence in the solid state, has been re-determined at several pressures ranging from atmospheric up to 3 GPa using a Diamond Anvil Cell (DAC). These experiments were augmented by periodic DFT calculations at pressures up to 4.4 GPa. UV-Vis fluorescence of 1 a at non-ambient pressures has also been investigated. The crystal structure consists of infinite π -stacks of anti-parallel 1 a molecules with discernible dimers, which may exemplify aggregates formed by pyrene derivatives in solution and thin films, and is predominantly stabilized by dispersion. The average inter-planar distance between individual molecules within π -stacks decreases with pressure in the investigated range. This results in piezochromic properties of 1 a : a red-shift of sample color, as well as a bathochromic shift of fluorescence with pressure (by ca. 100 nm at 3.5 GPa). Two-component fluorescence spectra support the hypothesis that at least two types of excimers are involved in the electronic excitation processes in crystalline 1 a .

摘要

1-(芘-1-基)-2-丁炔-1-酮(1a)的晶体结构已在从大气压到 3 GPa 的几个压力范围内使用金刚石压腔(DAC)重新确定,该多环芳烃在固态下具有增强的发光性。这些实验通过高达 4.4 GPa 的周期性 DFT 计算得到了补充。1a 在非环境压力下的紫外-可见荧光也得到了研究。晶体结构由反平行 1a 分子的无限π -堆叠组成,具有可识别的二聚体,这可能例证了溶液和薄膜中芘衍生物形成的聚集体,主要由色散稳定。在所研究的范围内,π -堆叠中各个分子之间的平均层间距离随压力而减小。这导致了 1a 的压致变色性质:样品颜色的红移,以及荧光随压力的红移(在 3.5 GPa 时约为 100nm)。双组分荧光光谱支持了这样的假设,即在结晶 1a 中,电子激发过程至少涉及两种类型的激基缔合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d240/6471252/7c1c09e418c8/molecules-24-01107-g001.jpg

相似文献

1
Pressure-Dependent Structural and Luminescence Properties of 1-(Pyren-1-yl)but-2-yn-1-one.
Molecules. 2019 Mar 20;24(6):1107. doi: 10.3390/molecules24061107.
2
Structure and piezochromism of pyrene-1-carbaldehyde at high pressure.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2019 Jun 1;75(Pt 3):343-353. doi: 10.1107/S2052520619003354. Epub 2019 May 17.
6
Describing curved-planar π-π interactions: modeled by corannulene, pyrene and coronene.
Phys Chem Chem Phys. 2013 Aug 14;15(30):12694-701. doi: 10.1039/c3cp51095f.
8
Orbital-based insights into parallel-displaced and twisted conformations in π-π interactions.
Phys Chem Chem Phys. 2013 Jun 21;15(23):9397-406. doi: 10.1039/c3cp51077h. Epub 2013 May 10.
9
Surface related intrinsic luminescence from carbon nanodots: solvent dependent piezochromism.
Nanoscale Horiz. 2019 Jan 1;4(1):175-181. doi: 10.1039/c8nh00258d. Epub 2018 Oct 2.

引用本文的文献

本文引用的文献

1
The role of H-bond in the high-pressure chemistry of model molecules.
J Phys Condens Matter. 2018 Mar 7;30(9):094001. doi: 10.1088/1361-648X/aaa8cf.
2
model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems.
IUCrJ. 2017 Jul 4;4(Pt 5):575-587. doi: 10.1107/S205225251700848X. eCollection 2017 Sep 1.
3
Fine Tuning of Pyrene Excimer Fluorescence in Molecular Beacons by Alteration of the Monomer Structure.
J Org Chem. 2017 Oct 6;82(19):10015-10024. doi: 10.1021/acs.joc.7b01451. Epub 2017 Sep 14.
4
Synthesis, characterization and inclusion into liposomes of a new cationic pyrenyl amphiphile.
Chem Phys Lipids. 2016 Oct;200:83-93. doi: 10.1016/j.chemphyslip.2016.08.001. Epub 2016 Aug 10.
5
Role of Molecular Packing in Determining Solid-State Optical Properties of π-Conjugated Materials.
J Phys Chem Lett. 2011 Apr 21;2(8):863-73. doi: 10.1021/jz200099p. Epub 2011 Mar 29.
6
Crystal structure refinement with SHELXL.
Acta Crystallogr C Struct Chem. 2015 Jan;71(Pt 1):3-8. doi: 10.1107/S2053229614024218. Epub 2015 Jan 1.
9
Pyrene-based materials for organic electronics.
Chem Rev. 2011 Nov 9;111(11):7260-314. doi: 10.1021/cr100428a. Epub 2011 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验