Acar Pınar
Virginia Tech, Blacksburg, 24061, VA, USA.
Heliyon. 2019 Mar 7;5(3):e01225. doi: 10.1016/j.heliyon.2019.e01225. eCollection 2019 Mar.
The present study addresses the multi-scale computational modeling of a lightweight Aluminum-Lithium (Al-Li) 2070 alloy. The Al-Li alloys display significant anisotropy in material properties because of their strong crystallographic texture. To understand the relationships between processing, microstructural textures at different material points and tailored material properties, a multi-scale simulation is performed by controlling the texture evolution during deformation. To achieve the multi-scale framework, a crystal plasticity model based on a one-point probability descriptor, Orientation Distribution Function (ODF), is implemented to study the texture evolution. Next, a two-way coupled multi-scale model is developed, where the deformation gradient at the macro-scale integration points is passed to the micro-scale ODF model and the homogenized stress tensor at the micro-scale is passed back to the macro-scale model. A gradient-based optimization scheme which incorporates the multi-scale continuum sensitivity method is utilized to calibrate the slip system parameters of the alloy using the available experimental data. Next, the multi-scale simulations are performed for compression and tension using the calibrated crystal plasticity model, and the texture data is compared to the experiments. With the presented multi-scale modeling scheme, we achieve the location-specific texture predictions for a new generation Al-Li alloy for different deformation processes.
本研究针对轻质铝锂(Al-Li)2070合金进行多尺度计算建模。由于其强烈的晶体织构,Al-Li合金在材料性能方面表现出显著的各向异性。为了理解加工过程、不同材料点处的微观结构织构与定制材料性能之间的关系,通过控制变形过程中的织构演变进行多尺度模拟。为实现多尺度框架,基于单点概率描述符——取向分布函数(ODF)的晶体塑性模型被用于研究织构演变。接下来,开发了一个双向耦合多尺度模型,其中宏观尺度积分点处的变形梯度被传递到微观尺度ODF模型,微观尺度的均匀化应力张量被传回宏观尺度模型。一种结合多尺度连续体灵敏度方法的基于梯度的优化方案被用于利用现有实验数据校准合金的滑移系参数。接下来,使用校准后的晶体塑性模型对压缩和拉伸进行多尺度模拟,并将织构数据与实验进行比较。通过所提出的多尺度建模方案,我们实现了针对新一代Al-Li合金在不同变形过程中的特定位置织构预测。