State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China.
Beijing Key Laboratory for Magnetoeletric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China.
Nano Lett. 2019 Apr 10;19(4):2731-2738. doi: 10.1021/acs.nanolett.9b01093. Epub 2019 Apr 2.
Nitric oxide (NO) induces a multitude of antitumor activities, encompassing the induction of apoptosis, sensitization to chemo-, radio-, or immune-therapy, and inhibition of metastasis, drug resistance, angiogenesis, and hypoxia, thus attracting much attention in the area of cancer intervention. To improve the precise targeting and treatment efficacy of NO, a glutathione (GSH)-sensitive NO donor (1,5-bis[(l-proline-1-yl)diazen-1-ium-1,2-diol- O-yl]-2,4-dinitrobenzene, BPDB) coordinates with iron ions to form the nanoscale coordination polymer (NCP) via a simple precipitation and then partial ion exchange process. The obtained Fe(II)-BNCP shows desirable solubility, biocompatibility, and circulation stability. Quick NO release triggered by high concentrations of GSH in tumor cells improves the specificity of NO release in situ, thus avoiding side effects in other tissues. Meanwhile, under high concentrations of HO in tumors, Fe ions in BPDB-based NCP, named Fe(II)-BNCP, exert Fenton activity to generate hydroxyl radicals (·OH), which is the main contribution for chemodynamic therapy (CDT). In addition, ·O generated by the Haber-Weiss reaction of Fe ions with HO can quickly react with NO to produce peroxynitrite anion (ONOO) that is more cytotoxic than ·O or NO only. This synergistic NO-CDT effect has been proved to retard the tumor growth in Heps xenograft ICR mouse models. This work not only implements a synergistic effect of NO-CDT therapy but also offers a simple and efficient strategy to construct a coordination polymer nanomedicine via rationally designed prodrug molecules such as NO donors.
一氧化氮(NO)诱导多种抗肿瘤活性,包括诱导细胞凋亡、增加化学疗法、放射疗法或免疫疗法的敏感性、抑制转移、耐药性、血管生成和缺氧,因此在癌症干预领域引起了广泛关注。为了提高 NO 的精确靶向和治疗效果,一种谷胱甘肽(GSH)敏感的一氧化氮供体(1,5-双[(l-脯氨酸-1-基)偶氮-1,2-二醇-O-基]-2,4-二硝基苯,BPDB)通过简单的沉淀和部分离子交换过程与铁离子配位形成纳米级配位聚合物(NCP)。所得的 Fe(II)-BNCP 具有理想的溶解性、生物相容性和循环稳定性。肿瘤细胞中高浓度 GSH 触发的快速 NO 释放提高了原位 NO 释放的特异性,从而避免了其他组织的副作用。同时,在肿瘤中高浓度 HO 的条件下,BPDB 基 NCP 中的 Fe 离子发挥芬顿活性生成羟基自由基(·OH),这是化学动力学治疗(CDT)的主要贡献。此外,Fe 离子与 HO 的 Haber-Weiss 反应生成的·O 可以迅速与 NO 反应生成比·O 或 NO 单独作用更具细胞毒性的过氧亚硝酸阴离子(ONOO)。这种协同的 NO-CDT 效应已被证明可延缓 Heps 异种移植 ICR 小鼠模型中的肿瘤生长。这项工作不仅实现了 NO-CDT 治疗的协同效应,还提供了一种通过合理设计前药分子(如一氧化氮供体)构建配位聚合物纳米药物的简单高效策略。