Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
J Theor Biol. 2019 Jun 21;471:59-73. doi: 10.1016/j.jtbi.2019.03.023. Epub 2019 Mar 29.
Dynamic loading on the bone is beneficial in prevention and cure of bone loss as it encourages osteogenesis (i.e., new bone formation). Loading parameters such as strain magnitude, frequency, cycles, and strain rate (depending on loading waveform) affect the new bone formation. In-vivo studies suggested an optimal and osteogenic range of strain magnitude, frequency, and cycles to elicit the maximum new bone response. Still, there is no consensus on the selection of loading waveform. Animal studies on bone adaptation considered sinusoidal, and non-sinusoidal (e.g., trapezoidal, sawtooth, and triangular) loading waveforms according to physiological loadings (e.g., walking, running, and jumping etc.) without considering the relative effect of these waveforms on the loading-induced mechanical environment. The present study attempts to bridge this gap. Accordingly, this work hypothesizes that bone being a biphasic material (solid and fluid phases) experiences the same strain distribution for the different loading waves of the same amplitude, however, other components of the mechanical environment such as pore-pressure and interstitial fluid motion regulating the bone adaptation may differ. An in-vivo cantilever bending study is selected to substantiate the hypothesis. A poroelastic model is used to estimate the pore pressure and fluid motion developed in mouse tibia subjected to the: (i) trapezoidal, (ii) sawtooth, and (iii) triangular bending waves. Furthermore, poroelastic response of pore-pressure and fluid motion induced by these loading waveforms are compared and analyzed. This work also investigates how bone loss associated alterations in the microstructural environment of cortical bone affect the canalicular fluid motion induced by these waveforms. Overall results may be useful in designing optimal biomechanical interventions such as physical exercises to improve the bone health.
骨骼的动态加载有益于预防和治疗骨质疏松症,因为它可以促进成骨(即新骨形成)。加载参数(如应变幅度、频率、循环和应变速率(取决于加载波形))会影响新骨形成。体内研究表明,存在一个最佳的成骨应变幅度、频率和循环范围,可以引起最大的新骨反应。然而,对于加载波形的选择尚未达成共识。骨骼适应的动物研究根据生理负荷(例如行走、跑步和跳跃等)考虑了正弦和非正弦(例如梯形、锯齿形和三角形)加载波形,而没有考虑这些波形对加载引起的机械环境的相对影响。本研究试图弥补这一空白。因此,本工作假设骨骼是一种双相材料(固体和流体相),对于相同幅度的不同加载波,会经历相同的应变分布,然而,其他机械环境组件(例如孔隙压力和间质流体运动)调节骨骼适应的可能会有所不同。选择体内悬臂弯曲研究来验证该假设。使用多孔弹性模型来估计小鼠胫骨在受到以下几种弯曲波作用时产生的孔隙压力和流体运动:(i)梯形波、(ii)锯齿波和(iii)三角形波。此外,还比较和分析了这些加载波形引起的孔隙压力和流体运动的多孔弹性响应。本工作还研究了与骨丢失相关的皮质骨微观结构环境的改变如何影响这些波形引起的管腔流体运动。总体结果可能有助于设计最佳的生物力学干预措施,例如体育锻炼,以改善骨骼健康。