Suppr超能文献

绿色合成 Pluronic 稳定还原氧化石墨烯:化学和生物学特性分析。

Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization.

机构信息

Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, Kerala, India.

Biomaterials Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, East Sussex, BN2 4GJ, UK.

出版信息

Colloids Surf B Biointerfaces. 2019 Jul 1;179:94-106. doi: 10.1016/j.colsurfb.2019.03.043. Epub 2019 Mar 25.

Abstract

The wonder material graphene has numerous potential applications in nanoelectronics, biomedicine, storage devices, etc. Synthesis of graphene is highly challenging due to the toxic chemicals used and its low yield. In the present study, a facile green route for synthesis of reduced graphene oxide (rGO) was carried out using ascorbic acid as reducing agent. rGO was stabilized using Pluronic P123 polymer to give Pluronic stabilized reduced graphene oxide (rGO-P) and gave superior yield (15 mg graphene oxide yielded ˜13 mg rGO-P). Despite the potential neuroscience applications of graphene, the impending toxicological outcome upon interaction with neurons is not well understood. Here, differentiated PC-12 neuron-like cells exposed to rGO-P showed a dose-dependent cytotoxicity. Membrane disruption and cytoskeletal integrity remained uncompromised after 24 h exposure. Oxidative stress in PC-12 was evident due to an increase in ROS generation in dose and time-dependent manner. In vivo acute toxicity was assessed in mice administered with 10 mg/kg body weight of rGO-P. There were no evident changes in behaviour, motor function or other morphological changes. In conclusion, rGO-P was successfully synthesized and provided superior yield. Even though in vitro toxicity testing showed dose-dependent toxicity, in vivo toxic effect was not apparent.

摘要

神奇材料石墨烯在纳米电子学、生物医学、存储设备等领域具有众多潜在应用。由于使用有毒化学物质和产量低,石墨烯的合成极具挑战性。在本研究中,使用抗坏血酸作为还原剂,通过简便的绿色路线合成了还原氧化石墨烯(rGO)。rGO 用 Pluronic P123 聚合物稳定化,得到 Pluronic 稳定的还原氧化石墨烯(rGO-P),产率更高(15mg 氧化石墨烯得到约 13mg rGO-P)。尽管石墨烯具有潜在的神经科学应用,但与神经元相互作用时即将产生的毒理学后果尚未得到充分理解。在这里,暴露于 rGO-P 的分化 PC-12 神经元样细胞表现出剂量依赖性细胞毒性。在 24 小时暴露后,细胞膜破坏和细胞骨架完整性保持不变。PC-12 中的氧化应激由于 ROS 生成呈剂量和时间依赖性增加而明显。在给予 10mg/kg 体重 rGO-P 的小鼠中评估了体内急性毒性。行为、运动功能或其他形态变化没有明显变化。总之,成功合成了 rGO-P,产率更高。尽管体外毒性试验显示出剂量依赖性毒性,但体内毒性效应不明显。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验