Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain.
Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
Chemosphere. 2019 Jul;226:509-519. doi: 10.1016/j.chemosphere.2019.03.152. Epub 2019 Mar 28.
In this research, the degradation of seven different micropollutants (MPs) and the formation of their transformation products (TPs) have been assessed during the application of different advanced oxidation processes: photolytic and photocatalytic activation of peroxymonosulfate (PMS) and persulfate (PS). The results were compared with those obtained from the photolytic experiments using hydrogen peroxide (HO) as oxidant. A significant abatement of almost all MPs was achieved, even with very low UV-C contact time (9 and 28 s). The degradation of atenolol (ATN) and caffeine (CFN) ranged from 84 to 100% with a dose of 0.5 mM of any oxidant. The efficiencies for bisphenol-A (BPA), carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBP), and sulfamethoxazole (SMX) varied depending on the oxidation system and operating conditions (oxidant dose and UV-C contact time), leading to the photolysis of PMS to higher efficiencies than PS and HO. In all cases, the abatement of MPs ranged from 63 to 83%, even with the lowest PMS dosage. Moreover, the addition of Fe(II) as a catalyst enhanced the removal efficiency, reaching almost total removal, especially over CBZ, DCF, and IBP. The Dissolved Organic Carbon (DOC) removal ranged between 44 and 62%, suggesting the transformation of MPs in intermediate compounds. The identification of transformation products was carried out for each micropollutant and each oxidation treatment, being observed some transformation products specific of oxidation by sulfate radicals. For example, m/z 165.0432 only appeared after PMS/Fe(II)/UV-C on the degradation of BFA, m/z 251.082 appeared after photolytic activation of PMS and PS on CBZ removal, and m/z 128.0452 was observed after any sulfate radical oxidation treatment, but not after photolysis of HO.
在这项研究中,评估了不同高级氧化工艺(光解和光催化过一硫酸盐(PMS)和过硫酸盐(PS)的激活)应用过程中七种不同的微污染物(MPs)的降解和它们的转化产物(TPs)的形成。将结果与使用过氧化氢(HO)作为氧化剂的光解实验结果进行了比较。即使在非常短的 UV-C 接触时间(9 和 28 s)下,几乎所有 MPs 都得到了显著的去除。使用 0.5 mM 的任何氧化剂时,阿替洛尔(ATN)和咖啡因(CFN)的降解率在 84%至 100%之间。双酚-A(BPA)、卡马西平(CBZ)、二氯芬酸(DCF)、布洛芬(IBP)和磺胺甲恶唑(SMX)的效率取决于氧化体系和操作条件(氧化剂剂量和 UV-C 接触时间),导致 PMS 的光解效率高于 PS 和 HO。在所有情况下,即使使用最低剂量的 PMS,MPs 的去除率也在 63%至 83%之间。此外,添加 Fe(II)作为催化剂可提高去除效率,特别是对 CBZ、DCF 和 IBP,几乎可以达到完全去除。溶解有机碳(DOC)的去除率在 44%至 62%之间,表明 MPs 转化为中间化合物。对每个微污染物和每个氧化处理都进行了转化产物的鉴定,观察到了一些特定于硫酸盐自由基氧化的转化产物。例如,m/z 165.0432 仅在 PMS/Fe(II)/UV-C 降解 BFA 后出现,m/z 251.082 出现在 PMS 和 PS 光解激活 CBZ 去除后,m/z 128.0452 在任何硫酸盐自由基氧化处理后都能观察到,但在 HO 的光解后不能观察到。