Suppr超能文献

磁共振成像中阴道后壁脱垂测量系统的比较

Comparison of measurement systems for posterior vaginal wall prolapse on magnetic resonance imaging.

作者信息

Xie Bing, Chen Luyun, Xue Zhuowei, English Emily M, Fenner Dee E, Gaetke-Udager Kara, Kolenic Giselle E, Ashton-Miller James A, DeLancey John O

机构信息

Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.

Department of Obstetrics and Gynecology, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.

出版信息

Int Urogynecol J. 2019 Aug;30(8):1269-1277. doi: 10.1007/s00192-019-03939-4. Epub 2019 Apr 10.

Abstract

INTRODUCTION AND HYPOTHESIS

A wide variety of reference lines and landmarks have been used in imaging studies to diagnose and quantify posterior vaginal wall prolapse without consensus. We sought to determine which is the best system to (1) identify posterior vaginal wall prolapse and its appropriate cutoff values and (2) assess the prolapse size.

METHODS

This was a secondary analysis of sagittal maximal Valsalva dynamic MRI scans from 52 posterior-predominant prolapse cases and 60 comparable controls from ongoing research. All eight existing measurement lines and a new parameter, the exposed vaginal length, were measured. Expert opinions were used to score the prolapse sizes. Simple linear regressions, effect sizes, area under the curve, and classification and regression tree analyses were used to compare these reference systems and determine cutoff values. Linear and ordinal logistic regressions were used to assess the effectiveness of the prolapse size.

RESULTS

Among existing parameters, "the perineal line-internal pubis," a reference line from the inside of the pubic symphysis to the front tip of the perineal body (cutoff value 0.9 cm), had the largest effect size (1.61), showed the highest sensitivity and specificity to discriminate prolapse with area under the curve (0.91), and explained the most variation (68%) in prolapse size scores. The exposed vaginal length (cutoff value 2.9) outperformed all the existing lines, with the largest effect size (2.09), area under the curve (0.95), and R-squared value (0.77).

CONCLUSIONS

The exposed vaginal length performs slightly better than the best of the existing systems, for both diagnosing and quantifying posterior prolapse size. Performance characteristics and evidence-based cutoffs might be useful in clinical practice.

摘要

引言与假设

在影像学研究中,人们使用了各种各样的参考线和标志点来诊断和量化阴道后壁脱垂,但尚未达成共识。我们试图确定哪种系统最适合(1)识别阴道后壁脱垂及其合适的临界值,以及(2)评估脱垂大小。

方法

这是一项对正在进行的研究中52例以阴道后壁为主的脱垂病例和60例可比对照的矢状面最大瓦尔萨尔瓦动态磁共振成像扫描的二次分析。测量了所有八条现有的测量线和一个新参数——暴露阴道长度。采用专家意见对脱垂大小进行评分。使用简单线性回归、效应量、曲线下面积以及分类与回归树分析来比较这些参考系统并确定临界值。使用线性和有序逻辑回归来评估脱垂大小的有效性。

结果

在现有参数中,“会阴线 - 耻骨内侧”,即从耻骨联合内侧到会阴体前端的参考线(临界值0.9厘米),效应量最大(1.61),在区分脱垂方面曲线下面积显示出最高的敏感性和特异性(0.91),并且解释了脱垂大小评分中最大的变异(68%)。暴露阴道长度(临界值2.9)优于所有现有测量线,效应量最大(2.09),曲线下面积(0.95),决定系数(0.77)。

结论

对于诊断和量化阴道后壁脱垂大小,暴露阴道长度的表现略优于现有最佳系统。性能特征和基于证据的临界值可能在临床实践中有用。

相似文献

1
Comparison of measurement systems for posterior vaginal wall prolapse on magnetic resonance imaging.
Int Urogynecol J. 2019 Aug;30(8):1269-1277. doi: 10.1007/s00192-019-03939-4. Epub 2019 Apr 10.
3
Posterior vaginal prolapse shape and position changes at maximal Valsalva seen in 3-D MRI-based models.
Int Urogynecol J. 2012 Sep;23(9):1301-6. doi: 10.1007/s00192-012-1760-9. Epub 2012 Apr 24.
4
Structural position of the posterior vagina and pelvic floor in women with and without posterior vaginal prolapse.
Am J Obstet Gynecol. 2010 May;202(5):497.e1-6. doi: 10.1016/j.ajog.2010.01.001.
5
Structural Failure Sites in Anterior Vaginal Wall Prolapse: Identification of a Collinear Triad.
Obstet Gynecol. 2016 Oct;128(4):853-862. doi: 10.1097/AOG.0000000000001652.
6
Structural failure sites in posterior vaginal wall prolapse: stress 3D MRI-based analysis.
Int Urogynecol J. 2021 Jun;32(6):1399-1407. doi: 10.1007/s00192-021-04685-2. Epub 2021 Mar 11.
7
Anterior vaginal wall length and degree of anterior compartment prolapse seen on dynamic MRI.
Int Urogynecol J Pelvic Floor Dysfunct. 2008 Jan;19(1):137-42. doi: 10.1007/s00192-007-0405-x. Epub 2007 Jun 20.
8
Variations in structural support site failure patterns by prolapse size on stress 3D MRI.
Int Urogynecol J. 2023 Aug;34(8):1923-1931. doi: 10.1007/s00192-023-05482-9. Epub 2023 Feb 18.
9
Assessment of posterior vaginal wall prolapse: comparison of physical findings to cystodefecoperitoneography.
Int Urogynecol J Pelvic Floor Dysfunct. 2005 Mar-Apr;16(2):96-103; discussion 103. doi: 10.1007/s00192-004-1220-2. Epub 2004 Sep 14.
10
Vaginal thickness, cross-sectional area, and perimeter in women with and those without prolapse.
Obstet Gynecol. 2005 May;105(5 Pt 1):1012-7. doi: 10.1097/01.AOG.0000158127.97690.4e.

引用本文的文献

1
International Urogynecological Consultation Chapter 2.2: Imaging in the Diagnosis of Pelvic Organ Prolapse.
Int Urogynecol J. 2025 Apr;36(4):759-781. doi: 10.1007/s00192-024-05948-4. Epub 2025 Mar 26.
2
Structural failure sites in posterior vaginal wall prolapse: stress 3D MRI-based analysis.
Int Urogynecol J. 2021 Jun;32(6):1399-1407. doi: 10.1007/s00192-021-04685-2. Epub 2021 Mar 11.
3
Ultrasound imaging of the perineal body: a useful clinical tool.
Int Urogynecol J. 2020 Jun;31(6):1197-1202. doi: 10.1007/s00192-019-04166-7. Epub 2019 Dec 11.

本文引用的文献

1
Structural, functional, and symptomatic differences between women with rectocele versus cystocele and normal support.
Am J Obstet Gynecol. 2018 May;218(5):510.e1-510.e8. doi: 10.1016/j.ajog.2018.01.033. Epub 2018 Feb 2.
2
Magnetic resonance imaging of pelvic floor dysfunction - joint recommendations of the ESUR and ESGAR Pelvic Floor Working Group.
Eur Radiol. 2017 May;27(5):2067-2085. doi: 10.1007/s00330-016-4471-7. Epub 2016 Aug 3.
3
Consistently inconsistent, the posterior vaginal wall.
Am J Obstet Gynecol. 2016 Mar;214(3):314-20. doi: 10.1016/j.ajog.2015.09.001. Epub 2015 Sep 5.
4
How large does a rectocele have to be to cause symptoms? A 3D/4D ultrasound study.
Int Urogynecol J. 2015 Sep;26(9):1355-9. doi: 10.1007/s00192-015-2709-6. Epub 2015 May 6.
7
Do repetitive Valsalva maneuvers change maximum prolapse on dynamic MRI?
Int Urogynecol J. 2010 Oct;21(10):1247-51. doi: 10.1007/s00192-010-1178-1. Epub 2010 Jun 11.
8
Structural position of the posterior vagina and pelvic floor in women with and without posterior vaginal prolapse.
Am J Obstet Gynecol. 2010 May;202(5):497.e1-6. doi: 10.1016/j.ajog.2010.01.001.
10
A 3D finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation.
J Biomech. 2009 Jul 22;42(10):1371-1377. doi: 10.1016/j.jbiomech.2009.04.043. Epub 2009 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验