MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China.
Biomater Sci. 2019 May 28;7(6):2552-2558. doi: 10.1039/c9bm00347a.
A new approach to the development of functional biomaterials is to obtain a controllable nanostructure through supramolecular self-assembly. Although much effort has been devoted to supramolecular structures with different morphologies and properties, fluorescent macrocycle-based carbon material assembly into three-dimensional vesicle morphologies remains a challenge. Herein, the supramolecular properties of cycloparaphenylene (CPP) in a mixed solution are characterized and controlled successfully through the regulation of different concentrations and solvent ratios. The self-assembled CPP molecules form a three-dimensional hollow structure in different solutions. The assembled vesicle structure endows CPPs with cell biology application and it is found that CPPs could be internalized by cells via an energy- or temperature-independent mechanism. Even in the presence of different inhibitors, cellular uptake of [10]CPP could not be affected. These supramolecular and biological findings of CPPs extend the current understanding of cycloparaphenylene chemistry and will open up new and more attractive applications in nanotechnology, biology and materials science.
获得通过超分子自组装得到可控纳米结构是开发功能生物材料的一种新方法。尽管人们已经投入了大量精力来研究具有不同形貌和性能的超分子结构,但将基于荧光大环的碳材料组装成三维囊泡形态仍然是一个挑战。在此,通过调节不同浓度和溶剂比,成功地对混合溶液中环对苯撑(CPP)的超分子性质进行了表征和控制。自组装的 CPP 分子在不同溶液中形成了三维空心结构。组装的囊泡结构赋予 CPP 细胞生物学应用的特性,并且发现 CPP 可以通过能量或温度独立的机制被细胞内化。即使存在不同的抑制剂,[10]CPP 的细胞摄取也不会受到影响。CPP 的这些超分子和生物学发现扩展了环对苯撑化学的现有认识,并将在纳米技术、生物学和材料科学领域开辟新的、更有吸引力的应用。