Suppr超能文献

基于有向形态滤波的叶脉网络自动层次分类用于层次结构特征提取。

Automatic hierarchy classification in venation networks using directional morphological filtering for hierarchical structure traits extraction.

机构信息

Department of Computer and Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, China.

Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, China.

出版信息

Comput Biol Chem. 2019 Jun;80:187-194. doi: 10.1016/j.compbiolchem.2019.03.012. Epub 2019 Mar 26.

Abstract

The extraction of vein traits from venation networks is of great significance to the development of a variety of research fields, such as evolutionary biology. However, traditional studies normally target to the extraction of reticulate structure traits (ReSTs), which is not sufficient enough to distinguish the difference between vein orders. For hierarchical structure traits (HiSTs), only a few tools have made attempts with human assistance, and obviously are not practical for large-scale traits extraction. Thus, there is a necessity to develop the method of automated vein hierarchy classification, raising a new challenge yet to be addressed. We propose a novel vein hierarchy classification method based on directional morphological filtering to automatically classify vein orders. Different from traditional methods, our method classify vein orders from highly dense venation networks for the extraction of traits with ecological significance. To the best of our knowledge, this is the first attempt to automatically classify vein hierarchy. To evaluate the performance of our method, we prepare a soybean transmission image dataset (STID) composed of 1200 soybean leaf images and the vein orders of these leaves are manually coarsely annotated by experts as ground truth. We apply our method to classify vein orders of each leaf in the dataset. Compared with ground truth, the proposed method achieves great performance, while the average deviation on major vein is less than 5 pixels and the average completeness on second-order veins reaches 54.28%.

摘要

从脉序网络中提取脉纹特征对于进化生物学等多个研究领域的发展具有重要意义。然而,传统的研究通常针对网状结构特征(ReSTs)的提取,这不足以区分脉序之间的差异。对于层次结构特征(HiSTs),只有少数工具在人类辅助下进行了尝试,显然不适合大规模特征提取。因此,有必要开发自动化脉序分类方法,这提出了一个有待解决的新挑战。我们提出了一种基于有向形态滤波的新的脉序分类方法,以自动对脉序进行分类。与传统方法不同,我们的方法从高度密集的脉序网络中对脉序进行分类,以提取具有生态意义的特征。据我们所知,这是首次尝试自动分类脉序。为了评估我们方法的性能,我们准备了一个由 1200 张大豆叶片图像组成的大豆透射图像数据集(STID),这些叶片的脉序由专家手动进行粗糙注释作为地面真实。我们将我们的方法应用于对数据集的每个叶片的脉序进行分类。与地面真实相比,所提出的方法取得了很好的性能,而主要脉的平均偏差小于 5 个像素,二级脉的平均完整性达到 54.28%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验