Grzetic Douglas J, Delaney Kris T, Fredrickson Glenn H
Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
Departments of Chemical Engineering and Materials, University of California, Santa Barbara, California 93106, USA.
Phys Rev Lett. 2019 Mar 29;122(12):128007. doi: 10.1103/PhysRevLett.122.128007.
We examine the static dielectric constant of electrolyte solutions with a polar and/or polarizable small-molecule solvent using a classical field-theoretic approach. We compute corrections to the dielectric constant and screening length due to intra- and intermolecular correlations via a renormalized one-loop approximation, accounting for the excluded volume of both solvent and electrolyte. In the salt-free case, we verify the one-loop theory by comparison with full numerical solutions of the field theory. The one-loop theory predicts either a nonlinear dielectric decrement or increment with increasing salt, depending on whether the fluid correlations are dominated by the dipolar or polarizable nature of the solvent. These contrasting regimes of nonlinear dielectric behavior are consistent with experimental trends in high- and low-dielectric constant electrolyte solutions.
我们使用经典场论方法研究含有极性和/或可极化小分子溶剂的电解质溶液的静态介电常数。我们通过重整化单圈近似计算由于分子内和分子间相关性引起的介电常数和屏蔽长度的修正,同时考虑溶剂和电解质的排斥体积。在无盐情况下,我们通过与场论的全数值解进行比较来验证单圈理论。单圈理论预测,随着盐浓度的增加,介电常数要么呈非线性减小,要么呈非线性增加,这取决于流体相关性是由溶剂的偶极性质还是可极化性质主导。这些非线性介电行为的不同模式与高介电常数和低介电常数电解质溶液的实验趋势一致。