Suppr超能文献

一种作为便携式甚低频发射器的高Q值压电谐振器。

A high Q piezoelectric resonator as a portable VLF transmitter.

作者信息

Kemp Mark A, Franzi Matt, Haase Andy, Jongewaard Erik, Whittaker Matthew T, Kirkpatrick Michael, Sparr Robert

机构信息

SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.

Gooch and Housego, LLC., 676 Alpha Drive., Highland Heights, OH, 44143, USA.

出版信息

Nat Commun. 2019 Apr 12;10(1):1715. doi: 10.1038/s41467-019-09680-2.

Abstract

Very low frequency communication systems (3 kHz-30 kHz) enable applications not feasible at higher frequencies. However, the highest radiation efficiency antennas require size at the scale of the wavelength (here, >1 km), making portable transmitters extremely challenging. Facilitating transmitters at the 10 cm scale, we demonstrate an ultra-low loss lithium niobate piezoelectric electric dipole driven at acoustic resonance that radiates with greater than 300x higher efficiency compared to the previous state of the art at a comparable electrical size. A piezoelectric radiating element eliminates the need for large impedance matching networks as it self-resonates at the acoustic wavelength. Temporal modulation of this resonance demonstrates a device bandwidth greater than 83x beyond the conventional Bode-Fano limit, thus increasing the transmitter bitrate while still minimizing losses. These results will open new applications for portable, electrically small antennas.

摘要

甚低频通信系统(3千赫至30千赫)可实现一些在较高频率下不可行的应用。然而,辐射效率最高的天线需要达到波长尺度(在此处,大于1千米),这使得便携式发射机极具挑战性。为了实现10厘米尺度的发射机,我们展示了一种在声共振下驱动的超低损耗铌酸锂压电电偶极子,在可比的电尺寸下,其辐射效率比先前的技术水平高出300倍以上。压电辐射元件无需大型阻抗匹配网络,因为它在声波波长下自谐振。对这种共振进行时间调制,展示了一种超出传统博德-法诺极限83倍以上的设备带宽,从而在仍将损耗降至最低的同时提高了发射机比特率。这些结果将为便携式、电尺寸小的天线开辟新的应用领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c60f/6461683/944dd4c53bb1/41467_2019_9680_Fig1_HTML.jpg

相似文献

1
A high Q piezoelectric resonator as a portable VLF transmitter.
Nat Commun. 2019 Apr 12;10(1):1715. doi: 10.1038/s41467-019-09680-2.
2
Acoustically driven electromagnetic radiating elements.
Sci Rep. 2020 Oct 12;10(1):17006. doi: 10.1038/s41598-020-73973-6.
3
Acoustically actuated ultra-compact NEMS magnetoelectric antennas.
Nat Commun. 2017 Aug 22;8(1):296. doi: 10.1038/s41467-017-00343-8.
6
A High-Q Electric-Mechano-Magnetic Coupled Resonator for ELF/SLF Cross-Medium Magnetic Communication.
Adv Mater. 2024 Mar;36(13):e2309159. doi: 10.1002/adma.202309159. Epub 2023 Dec 26.
7
A Multilayered Magnetoelectric Transmitter with Suppressed Nonlinearity for Portable VLF Communication.
Research (Wash D C). 2023 Sep 15;6:0208. doi: 10.34133/research.0208. eCollection 2023.
9
Magnetic Pendulum Arrays for Efficient ULF Transmission.
Sci Rep. 2019 Sep 13;9(1):13220. doi: 10.1038/s41598-019-49341-4.
10
Beyond Chu's Limit with Floquet Impedance Matching.
Phys Rev Lett. 2019 Oct 18;123(16):164102. doi: 10.1103/PhysRevLett.123.164102.

引用本文的文献

3
Electric-field sensing with driven-dissipative time crystals in room-temperature Rydberg vapor.
Sci Rep. 2025 Apr 18;15(1):13446. doi: 10.1038/s41598-025-97560-9.
4
Isolation Transformer Based Very Low Frequency Antenna with Enhanced Radiation Characteristics.
Adv Sci (Weinh). 2025 Jan;12(3):e2408770. doi: 10.1002/advs.202408770. Epub 2024 Nov 28.
5
Miniaturized buried low-frequency acoustically actuated magnetoelectric antenna for soil moisture adaptive underground communication.
iScience. 2024 Oct 11;27(11):111151. doi: 10.1016/j.isci.2024.111151. eCollection 2024 Nov 15.
6
A Bionic Flapping Magnetic-Dipole Resonator for ELF Cross-Medium Communication.
Adv Sci (Weinh). 2024 Aug;11(30):e2403746. doi: 10.1002/advs.202403746. Epub 2024 Jun 14.
7
Digital non-Foster-inspired electronics for broadband impedance matching.
Nat Commun. 2024 May 21;15(1):4346. doi: 10.1038/s41467-024-48861-6.
8
An ultra-compact mechanical antenna based on PTFE highly charged electret for extremely low frequency communications.
Heliyon. 2024 Mar 6;10(5):e26933. doi: 10.1016/j.heliyon.2024.e26933. eCollection 2024 Mar 15.

本文引用的文献

1
Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting.
Sci Rep. 2018 Oct 9;8(1):15038. doi: 10.1038/s41598-018-33388-w.
2
Acoustically actuated ultra-compact NEMS magnetoelectric antennas.
Nat Commun. 2017 Aug 22;8(1):296. doi: 10.1038/s41467-017-00343-8.
4
Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Sep;48(5):1189-240. doi: 10.1109/58.949732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验