Suppr超能文献

[使用形态学标准和算法复合体自动检测室性和室上性宽QRS心律失常]

[Automatic detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms].

作者信息

Budanova M A, Chmelevsky M P, Treshkur T V, Aseev A V, Tikhonenko V M

机构信息

Almazov Federal Medical Research Centre, Akkuratova, 2, St. Petersburg 197341.

Almazov Federal Medical Research Centre, Akkuratova, 2, St. Petersburg 197341; EP Solutions SA, Av. des Sciences, 13, Yverdon-les-Bains, Switzerland.

出版信息

Kardiologiia. 2019 Apr 13;59(3S):36-42. doi: 10.18087/cardio.2659.

Abstract

AIM

The aim of study is a detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms by method of automatic analysis.

MATERIALS AND METHODS

For 100 patients (m/f - 61/39, Me (min; max) - 44.5 (10; 85) years) of researched group the analysis of 14306 single wide ectopic complexes (QRS 120-230 ms) has been done. Wide complexes include 11028 (77%) ventricular complexes and 3278 (23%) supraventricular complexes represented by 145 different forms of QRS. For verification of arrhythmias origin transesophageal ECG recording and endocardial electrophysiological study were done. The control group included 59 patients (m/f - 25/34, Me (min; max) - 49.5 (14,85) years) with 720 wide QRS, including 467 (65%) ventricular and 253 (35%) supraventricular complexes represented by 86 forms of QRS. The criteria Drew B.J., Scheinman M.M. (1995); Wellens H.J. (1978), RWPT II (Pava LF, 2010) and the algorithms of Brugada P. (1991); Bayesian (2000); Vereckei A. (2008) were used to evaluate sensitivity, specificity and diagnostic accuracy of wide QRS complexes recognition one by one and together, using the method of Wald sequential automatic analysis (KT Result3, CJSC INCART, Russia) and method of artificial neural networks.

RESULTS

The best results for the detection of ventricular arrhythmias algorithms were demonstrated by the  Brugada  P., Drew  B.J., Scheinman  M.M. algorithm (sensitivity 86.43%, specificity 66.73%, diagnostic accuracy 82.14% in the study group, sensitivity 81.80%, specificity 73.12%, diagnostic accuracy 78.75% in the control group), and the Bayesian algorithm (sensitivity 87.81%, specificity 73.62%, diagnostic accuracy 84.72% in the study group, sensitivity 83.30%, specificity 77.08%, diagnostic accuracy 81.11% in the control group). A complex analysis of the Wald method recognized ventricular arrhythmias in the research group with sensitivity 83.11%, specificity 83.65%, diagnostic accuracy 83.23% and in the control group with a sensitivity 83.51%, specificity of 84.58% and diagnostic accuracy 83.89%. Artificial neural networks recognized ventricular arrhythmias with sensitivity 91.43%, specificity 91.30% and diagnostic accuracy 91.39% in the control group and with sensitivity 97.06%, specificity 99.39% and diagnostic accuracy 97.6% in the research group.

CONCLUSION

Automatic analysis allows obtaining simultaneously the results of each algorithms/criteria and in combination. It significantly reduces the doctor's work in assessing of amplitude-time characteristics of the complexes. Using artificial neural networks increases the accuracy of of ventricular and supraventricular arrhythmias recognition.

摘要

目的

本研究旨在通过自动分析方法,利用形态学标准和算法检测室性和室上性宽QRS心律失常。

材料与方法

对研究组100例患者(男/女-61/39,年龄中位数(最小值;最大值)-44.5(10;85)岁)的14306个单发性宽异位复合波(QRS 120 - 230 ms)进行分析。宽复合波包括11028个(77%)室性复合波和3278个(23%)室上性复合波,呈现145种不同的QRS形态。为验证心律失常的起源,进行了经食管心电图记录和心内膜电生理研究。对照组包括59例患者(男/女-25/34,年龄中位数(最小值;最大值)-49.5(14,85)岁),有720个宽QRS,其中包括467个(65%)室性复合波和253个(35%)室上性复合波,呈现86种QRS形态。采用Drew B.J.、Scheinman M.M.(1995年);Wellens H.J.(1978年)、RWPT II(Pava LF,2010年)的标准以及Brugada P.(1991年)、贝叶斯(2000年)、Vereckei A.(2008年)的算法,通过Wald序贯自动分析方法(俄罗斯CJSC INCART公司的KT Result3)和人工神经网络方法,逐一及综合评估宽QRS复合波识别的敏感性、特异性和诊断准确性。

结果

检测室性心律失常算法的最佳结果由Brugada P.、Drew B.J.、Scheinman M.M.算法展示(研究组敏感性86.43%,特异性66.73%,诊断准确性82.14%;对照组敏感性81.80%,特异性73.12%,诊断准确性78.75%),以及贝叶斯算法(研究组敏感性87.81%,特异性73.62%,诊断准确性84.72%;对照组敏感性83.30%,特异性77.08%,诊断准确性81.11%)。Wald方法的综合分析在研究组中识别室性心律失常的敏感性为83.11%,特异性为83.65%,诊断准确性为83.23%;在对照组中敏感性为83.51%,特异性为84.58%,诊断准确性为83.89%。人工神经网络在对照组中识别室性心律失常的敏感性为91.43%,特异性为91.30%,诊断准确性为91.39%;在研究组中敏感性为97.06%,特异性为99.39%,诊断准确性为97.6%。

结论

自动分析能够同时获得各算法/标准单独及综合的结果。它显著减少了医生评估复合波幅度-时间特征的工作量。使用人工神经网络提高了室性和室上性心律失常识别的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验