Suppr超能文献

用于药物递送的聚合和无机纳米生物材料的环境危害评估。

Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery.

机构信息

Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.

出版信息

J Nanobiotechnology. 2019 Apr 16;17(1):56. doi: 10.1186/s12951-019-0489-8.

Abstract

BACKGROUND

The increasing development and use of nanobiomaterials raises questions about their potential adverse effects on the environment after excretion and release. Published ecotoxicological data was searched for five polymeric nanobiomaterials [chitosan, polylactic acid (PLA), polyacrylonitrile (PAN), polyhydroxyalkanoates (PHA), and poly(lactic-glycolic acid) (PLGA)] and one inorganic nanobiomaterial [hydroxyapatite (HAP)] to evaluate the environmental hazards for freshwater and soil using a meta-analysis. If enough data was available, a probabilistic species sensitivity distribution (pSSD) and from this a predicted no effect concentration (PNEC) was calculated. If only one data point was available, a PNEC was calculated based on the most sensitive endpoint. Each material was classified either as "nano" or "non-nano", depending on the categorization in the original articles. When the original article specified that the material consisted of nanoparticles, the material was classified as nano; when nothing was mentioned, the material was classified as "non-nano".

RESULTS

For PLA, PHA and PLGA, no published data on ecotoxicity was found and therefore no hazard assessment could be conducted. In soils, HAP was found to have the lowest PNEC with 0.3 mg/kg, followed by PAN and chitosan. In freshwater, chitosan was found to have the lowest PNEC with 5 µg/l, followed by nano-chitosan, HAP and PAN.

CONCLUSION

Compared with other common pollutants, even the most sensitive of the selected nanobiomaterials, chitosan, is less toxic than engineered nanomaterials such as nano-ZnO and nano-Ag, some common antibiotics, heavy metals or organic pollutants such as triclosan. Given the current knowledge, the nanobiomaterials covered in this work therefore pose only little or no environmental hazard.

摘要

背景

随着纳米生物材料的不断发展和应用,人们越来越关注其排泄和释放后对环境的潜在不良影响。本研究通过Meta 分析,检索了五种聚合纳米生物材料(壳聚糖、聚乳酸(PLA)、聚丙烯腈(PAN)、聚羟基烷酸酯(PHA)和聚(乳酸-羟基乙酸)(PLGA))和一种无机纳米生物材料(羟基磷灰石(HAP))的已发表的生态毒理学数据,以评估其对淡水和土壤的环境危害。如果有足够的数据,将计算概率物种敏感性分布(pSSD)和由此得出的预测无效应浓度(PNEC)。如果只有一个数据点可用,则基于最敏感的终点计算 PNEC。根据原始文章中的分类,将每种材料分类为“纳米”或“非纳米”。当原始文章指定材料由纳米颗粒组成时,将该材料分类为纳米材料;当未提及任何内容时,将该材料分类为“非纳米”。

结果

对于 PLA、PHA 和 PLGA,未发现关于其生态毒性的已发表数据,因此无法进行危害评估。在土壤中,HAP 的 PNEC 最低,为 0.3mg/kg,其次是 PAN 和壳聚糖。在淡水中,壳聚糖的 PNEC 最低,为 5μg/L,其次是纳米壳聚糖、HAP 和 PAN。

结论

与其他常见污染物相比,即使是所选纳米生物材料中最敏感的壳聚糖,其毒性也低于工程纳米材料,如纳米 ZnO 和纳米 Ag、一些常见抗生素、重金属或有机污染物,如三氯生。考虑到目前的知识水平,本研究中涵盖的纳米生物材料对环境造成的危害很小或没有。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/200b/6466702/786d890551a7/12951_2019_489_Fig1_HTML.jpg

相似文献

1
Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery.
J Nanobiotechnology. 2019 Apr 16;17(1):56. doi: 10.1186/s12951-019-0489-8.
2
Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
Nanotoxicology. 2016;10(4):436-44. doi: 10.3109/17435390.2015.1073812. Epub 2015 Nov 10.
5
Probabilistic modelling of nanobiomaterial release from medical applications into the environment.
Environ Int. 2021 Jan;146:106184. doi: 10.1016/j.envint.2020.106184. Epub 2020 Nov 1.
6
Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
J Control Release. 2007 Jul 16;120(1-2):111-21. doi: 10.1016/j.jconrel.2007.03.018. Epub 2007 Apr 1.
7
Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far.
Front Bioeng Biotechnol. 2019 Oct 23;7:261. doi: 10.3389/fbioe.2019.00261. eCollection 2019.
9
Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling.
Environ Toxicol Chem. 2013 Jun;32(6):1278-87. doi: 10.1002/etc.2177. Epub 2013 Apr 16.
10
Investigation of nanotoxicological effects of nanostructured hydroxyapatite to microalgae Pseudokirchneriella subcapitata.
Ecotoxicol Environ Saf. 2017 Oct;144:138-147. doi: 10.1016/j.ecoenv.2017.06.008. Epub 2017 Jun 10.

引用本文的文献

1
Synergistic adsorption and photocatalysis study of TiO and activated carbon composite.
Heliyon. 2024 May 7;10(10):e30817. doi: 10.1016/j.heliyon.2024.e30817. eCollection 2024 May 30.
3
Nanofiber Carriers of Therapeutic Load: Current Trends.
Int J Mol Sci. 2022 Aug 2;23(15):8581. doi: 10.3390/ijms23158581.
4
Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant (MRSA).
Asian J Pharm Sci. 2022 Jan;17(1):102-119. doi: 10.1016/j.ajps.2021.11.004. Epub 2021 Dec 24.
5
Sonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model.
J Nanobiotechnology. 2022 Jan 21;20(1):46. doi: 10.1186/s12951-022-01252-9.
7
A Meta-analysis of Ecotoxicological Hazard Data for Nanoplastics in Marine and Freshwater Systems.
Environ Toxicol Chem. 2020 Dec;39(12):2588-2598. doi: 10.1002/etc.4887. Epub 2020 Nov 10.
8
A Methodological Safe-by-Design Approach for the Development of Nanomedicines.
Front Bioeng Biotechnol. 2020 Apr 2;8:258. doi: 10.3389/fbioe.2020.00258. eCollection 2020.
9
Evaluation of Ecotoxicology Assessment Methods of Nanomaterials and Their Effects.
Nanomaterials (Basel). 2020 Mar 26;10(4):610. doi: 10.3390/nano10040610.
10
Meta-Analysis of Pharmacokinetic Studies of Nanobiomaterials for the Prediction of Excretion Depending on Particle Characteristics.
Front Bioeng Biotechnol. 2019 Dec 17;7:405. doi: 10.3389/fbioe.2019.00405. eCollection 2019.

本文引用的文献

1
Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics.
J Mater Chem B. 2017 Oct 14;5(38):7819-7830. doi: 10.1039/c7tb02105d. Epub 2017 Sep 21.
2
Polymer-Based Nanomaterials and Applications for Vaccines and Drugs.
Polymers (Basel). 2018 Jan 2;10(1):31. doi: 10.3390/polym10010031.
4
Probabilistic modeling of the flows and environmental risks of nano-silica.
Sci Total Environ. 2016 Mar 1;545-546:67-76. doi: 10.1016/j.scitotenv.2015.12.100. Epub 2015 Dec 31.
6
Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
Nanotoxicology. 2016;10(4):436-44. doi: 10.3109/17435390.2015.1073812. Epub 2015 Nov 10.
7
Dual radiolabeling as a technique to track nanocarriers: the case of gold nanoparticles.
Molecules. 2015 Jul 16;20(7):12863-79. doi: 10.3390/molecules200712863.
8
Pharmacokinetics of metallic nanoparticles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Mar-Apr;7(2):189-217. doi: 10.1002/wnan.1304. Epub 2014 Oct 15.
9
Nanosafety research--are we on the right track?
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12304-19. doi: 10.1002/anie.201403367. Epub 2014 Oct 10.
10
Are nanosized or dissolved metals more toxic in the environment? A meta-analysis.
Environ Toxicol Chem. 2014 Dec;33(12):2733-9. doi: 10.1002/etc.2732. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验